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Abstract—Urban environments often subject residents to noise
levels that pose significant health risks, including hearing loss,
sleep disturbances, and decreased cognitive function. To address
these concerns, we deployed five sensor devices for acoustic
monitoring to measure and analyze noise around the VELTINS-
Arena in Gelsenkirchen, Germany, a major venue for sports and
concert events. This paper presents a detailed analysis of long-
term noise data collected via installed acoustic sensors, focusing
on identifying noise patterns and predicting future noise levels,
as well as investigating the dependence of noise exposure on
audible sound sources. Our research evaluates various time series
modeling techniques, both traditional and deep learning-based,
to forecast noise levels effectively. The study identified repetitive
patterns in urban noise levels influenced by daily rush hour
traffic and spectator movements, while local weather conditions,
especially wind, significantly impacted noise measurements. Event-
related noise, particularly from speech, cheering, and mechanical
noises, varied significantly with the type of event and sensor
placement, highlighting the need for strategic sensor positioning.

Index Terms—Noise Measurement, Noise Forecasting, Sound
Event Detection, Internet of Sounds.

I. INTRODUCTION

Excessive exposure to noise in urban environments poses
significant health risks to individuals. Prolonged exposure to
high noise levels can lead to hearing loss, sleep disturbances,
stress, and reduced cognitive performance. To study these
dangers, acoustic monitoring technologies offer a valuable
solution. These technologies enable the real-time measurement
and analysis of noise levels in urban areas, providing data
that can inform noise control measures and urban planning
strategies aimed at reducing noise exposure and improving
overall well-being in urban environments. From a high-level
perspective, the development of distributed acoustic sensors for
noise monitoring is highly relevant to the emerging Internet of
Sounds (IoS) research area [1].

The VELTINS-Arena1 in Gelsenkirchen, Germany, is a
regular venue for sports events and concerts (see Figure 1). It
is directly connected to several adjacent highways and a tram
line, which are used for the arrival and departure of tens of
thousands of spectators before and after the events. Especially
during concerts, there are occasional complaints from residents
about excessive noise. As part of the open innovation lab (OIL)
Gelsenkirchen2, which provides a testbed for new smart city-
related technologies and sensor systems, five acoustic sensor
units were installed near the arena (see Figure 2) in April 2023.

1https://en.veltins-arena.de
2https://openinnovationlab.gelsenkirchen.de

Fig. 1: VELTINS-Arena (source: FC Schalke 04)

In this paper, we study in detail the recorded measurement
data, which capture both noise levels as well as predominant
sound sources. As one focus of our research, we evaluate dif-
ferent traditional and deep learning-based time series modeling
methods for noise level forecasting. More concretely, our aim
is to answer the following research questions:
(RQ1) Which long-term repetition patterns can be observed
in the sound analysis results (e. g., daily rush hour commuter
traffic on nearby highways, arrival and departure of spectators
at major events)
(RQ2) Can we observe a correlation between local weather
conditions and the sound event detection (SED) results?
(RQ3) Which sound sources contribute most to high noise
levels, in particular during events at the VELTINS arena?
(RQ4) To what extent is it possible to predict the noise
exposure around the ARENA during major events based on
the measurements taken during previous (comparable) events?
(RQ5) Is the noise exposure for sports and concert events
consistent and how does it depend on the number of spectators?

II. RELATED WORK

In this section, we give an overview of related research
projects focusing on acoustic monitoring in urban environ-
ments. We first discuss three selected projects in detail before
drawing more general conclusions on aspects such as privacy
considerations and modeling approaches.

During the “Stadtlärm” project [2], [3], an acoustic sensor
was developed to measure noise level and detect predominant



Fig. 2: Sensor location at the Veltins ARENA in Gelsenkirchen,
Germany

sound events. Between 2017 and 2018, thirteen sensors were
installed in Jena, Germany, at different locations in a central
park area surrounded by tram tracks and noisy streets. Noise
level measurements followed the German “Technical Instruc-
tions on Noise Abatement” (TA Lärm) [4]. A central server
instance processed the distributed measurements to identify
the most likely local noise sources such as construction sites,
sports events, and concerts. In addition, the system includes
a web-based application for real-time visualization of noise
exposure throughout the city.

The Sounds of New York City (SONYC) project [5] is a
large-scale initiative that aims to monitor, analyze, and mitigate
urban noise pollution in New York City. The project uses
Raspberry Pi devices equipped with microphone modules to
collect noise data from various locations across the city. Noise
level measurements are supplemented by sound event detection
algorithms in order to better identify the prevailing noise
sources. Although manual review of noise complaints from
local residents often leads to a delayed response from the city
administration, the proposed automatic noise monitoring system
provides real-time noise measurements and can therefore
improve the efficiency and effectiveness of noise regulation
and enforcement.

In the CENSE project [6], a dense network of low-cost
acoustic sensors was deployed in Lorient, France, to enhance
numerical noise modeling with real-time in situ data. Additional
perceptual assessments were performed using questionnaires
to measure perceived noise annoyance and sound quality from
the perspective of pedestrians (outdoor) and residents (indoor).
The acoustic data recorded and transmitted from the sensors
include both noise level statistics and third-octave spectral data,
which, due to their low-frequency resolution, do not allow
the reconstruction of personal and speech-related information,
but are nevertheless a useful feature for sound event detection
(SED).

In general, we observe two opposing paradigms in the
distribution of tasks between edge sensors and centralized
servers in urban monitoring scenarios. In the first paradigm,
the analysis of recorded audio data is conducted entirely on the
sensor side [2] or on the server side based on spectrogram-like
data with very coarse frequency resolution [6]. These privacy-
by-design approaches prevent information of data protection

concern, such as randomly recorded spoken language, from
being reconstructed. In the second paradigm, (compressed)
audio data is transmitted for analysis from the sensors to
the server [7]. On the one hand, this makes it possible to
perform SED with significantly higher computing power, but
at the same time raises data protection concerns. As potential
countermeasures, the recorded audio data can be anonymized,
for example, by removing or scrambling segments with detected
voice or encrypting the transmitted data stream end-to-end [8].

Although most monitoring approaches implement sepa-
rated sound classifications on each sensor nodes, Vidaña-Vila
et al. [9] exploit the acoustic redundancy at nearby sensors
and propose a two-stage architecture, which further aggregates
classification results from individual sensor nodes to increase
classification reliability. In addition to sound event detection,
other potential tasks that can be implemented using acoustic
monitoring include anomaly detection, crowd counting, and
localization of sound events [8]. A multimodal analysis that
also includes visual sensor data has the potential to lead to a
more robust classification. Such an approach can combine
audio-visual data as done in the MARVEL project [8] or
the StreetAware dataset [10] or combine audio data with
spatiotemporal textual information [11] to integrate location
and time context in sound analysis.

III. METHODOLOGY

A. Acoustic Sensor

The acoustic sensors used for this project include custom
electronics and can be powered either permanently or by
buffering the nightly power of streetlamps using batteries.
For the purpose of this study, all sensors were mounted on
lampposts around the VELTINS arena as shown in Figure 3.
Wi-Fi is used for communication. Depending on the specific
hardware configuration, the electronic design employs custom
PCBs for energy supply and the integration of both peripheral
microphones. The hardware design builds on an earlier version
developed in the “StadtLärm” project (see [12], [2], [3] for an
in-depth discussion of the original architecture). In the current
configuration, the custom base PCB and the originally used
Raspberry Pi Compute Module 3 (CM3) has been replaced
by a regular Raspberry 4B with either 4 or 8 GB of RAM
with a separate power supply. The memory depends on the use
cases to be fulfilled by the sensor unit in question and thus
on the number of processes to be run in parallel for the audio
analysis.

The earlier single-microphone setup has been extended to
a binaural recording setup with two MEMS microphones
(TDK InvenSense ICS-4343) in ear-like distance to allow
detection of moving sound sources such as vehicles [13]. To
reduce wind noise and issues with rain, the drill holes behind
which the MEMS microphones are placed face towards the
bottom (and thus still towards ground-level sound sources)
and have been covered by acoustically transparent membranes.
Figure 4 shows the system electronics of the audio sensor
inside its weather-proof housing. The communication approach
has been simplified such that all audio analysis results are



Fig. 3: Acoustic sensor (grey box) mounted on a lamppost
in the Open Innovation Lab area at Gelsenkirchen. Photo:
comNET GmbH

Fig. 4: Interior of a sensor box (PCB stack on the left, power
supply on the right, microphones on the bottom edge).

decoded by a local process on the sensor and written directly
(InfluxDB line protocol over HTTPS) into a remote time series
database instance (InfluxDB v1). Several Grafana dashboards
are implemented to visualize all sensor data for municipal end
users.

B. Audio Processing

The audio sensor is equipped with three capabilities: mea-
suring noise levels, detecting sound events, and monitoring
traffic, including vehicle detection and classification. However,
since traffic monitoring is beyond the scope of this paper, the
focus of this section is on noise level measurements, sound
event detection, and noise forecasting methods.

1) Noise Level Measurement: Noise level measurements
are implemented in accordance to the specifications in the
German “TA Lärm” [4]. A general technique in noise level
measurement is to apply additional frequency weightings to
better model the frequency-dependent sensitivity of human
auditory perception [14]. We measure the A-weighted sound

level (LAF), the C-weighted sound level (LAC), as well as
the time-weighted sound level (LF), each with a temporal
resolution of 8 measurements per second and finally store the
temporal average over periods of one seconds. In this paper,
we focus solely on the LAF measurements.

2) Sound Event Detection: In addition to noise level mea-
surements, the sensor code implements sound event detection
(SED) functionality, which aims to identify the most prominent
sound sources at specific times [15]. We use the “VGG-like”
SED model from [16] with 222k parameters and train it
using the USM (V2) dataset proposed in [17], which includes
synthetically generated five-second long soundscapes composed
of between 2 and 6 sounds with random sound level and stereo
placement. The audio clips used to generate the soundscapes
have been selected from the FSD50k dataset [16] under the
restriction that their licenses allow commercial use. Given these
constraints, we make the commercial usability of the SED
model as transparent as possible. The sensor code triggers
the SED model every 2.5 seconds and analyzes the past 5
seconds of recorded audio. Here, we currently only consider
one microphone channel and do not take stereo information
into account. The SED outputs individual probability values
of each of the 26 sound classes airplane, alarm, birds, bus,
car, cheering, church bell, dogs, drilling, glass break, gunshot,
hammer, helicopter, jackhammer, lawn mower, motorcycle,
music, rain, sawing, scream, siren, speech, thunderstorm, train,
truck, wind, which cover different sound class categories such as
for instance human-made sounds, vehicle sounds, construction
site sounds, as well as security-related sounds.

C. Time Series Modeling

Both research questions (RQ1) and (RQ4) introduced in
Section I are related to the temporal progression of the noise
level captured by the audio sensors. We therefore treat the
noise level measurements as time series and study different
time series modeling and forecasting techniques. In general,
these techniques can be used to solve various tasks, including
classification, anomaly detection, regression, forecasting, and
clustering [18]. In this study, we compare five modeling
approaches for noise level forecasting, which will be described
in detail in the following subsections. For the training procedure,
we train all models using the mean squared error (MSE)
loss and the Adam optimizer for 100 epochs. Moreover, we
incorporated early stopping with a patience of 10 epochs to
prevent overfitting.

1) Naïve Forecaster: The Naïve Forecaster [19] simply uses
the last observed value in the training set as the forecast for all
future time points. It does not take into account any patterns
or trends in the data. Due to this naive modeling approach, its
main purpose is to provide a lower baseline performance for a
given dataset. Given the value of the time series yT at the last
observation time T , the prediction of the next value is simply
ŷT+1 = yT .

2) Linear Model: The “linear model” implements a linear
regression to map an explanatory variable to a response variable.
In the context of time series forecasting, this can be represented



as ŷt ≈ β0 + β1yt−1 where ŷt is the predicted value at time
t, yt−1 is the value at time t, β1 is the coefficient (slope)
for the predictor variable, β0 is the intercept [19], [20]. We
implemented the linear model using a dense layer without an
activation function to map a single input to a single output
similar to the Naïve Forecaster model.

3) Dense Model: We implement another forecasting model
(“dense model”) by stacking two dense layers with 64 neurons,
each with a rectified linear unit (ReLU) activation function, to
predict future values based on the previous values step by step
as before in the linear model.

4) Multi-step Dense Model: All models discussed previously
predict each time step individually and therefore cannot model
any temporal changes in the input data. To overcome this
limitation, we implement another forecasting model (“multi-
step dense model”), which allows to process multiple time
steps as input to predict a single output. Similarly to the dense
model, the multi-step dense model includes two dense layers
of 32 neurons and ReLU activation functions and a final linear
output layer.

5) Long Short-Term Memory (LSTM): The Long Short-Term
Memory (LSTM) model [21] was designed to better mitigate
the vanishing and exploding gradients that often occur during
the training of recurrent neural networks (RNN). The model
implements an internal memory unit and an input, forget, and
output gate to control which new information should be used
to update the memory cell, be forgotten, or be output by the
memory cell, respectively. LSTM models have been shown
to effectively capture long-term dependencies in sequential
data. This makes them particularly suitable for tasks such as
natural language processing, time series forecasting, and speech
recognition [18]. In our study, we evaluated two LSTM models.
The “Single-LSTM” model has one LSTM layer with 50
neurons, and the more complex “Multi-LSTM” model includes
three LSTM layers with 128 neurons each. In “Multi-LSTM”
models, the last LSTM layer is followed by a dense layer with
64 neurons and the ReLU activation function.

IV. EXPERIMENTS

In this section, we describe several experiments to answer
the research questions posed in Section I. Understanding
long-term repetition patterns in noise levels is not merely
a technical challenge; it plays a key role in enhancing urban
living conditions and public well-being. These patterns provide
essential information for effective noise mitigation in urban
planning.

A. (RQ1): Temporal Loudness Patterns

In this experiment, we study the LAF measurements recorded
between April and November 2023 at sensor 3, which is located
near the entrance to the VELTINS arena, and sensor 5, which
mainly captures traffic noise at the nearby tram station (see
Figure 2). We resample the measurements to a 15-minute time
resolution and group them by workdays (Monday to Friday)
and weekend days (Saturday and Sunday). Furthermore, we
derive two additional groups from five days in which concert

TABLE I: Investigated events at the VELTINS Arena between
April to November 2023 grouped by soccer games (S) and
concerts (C).

Events Date Start End # Spectators
FC Schalke 04 - Hertha BSC (S) 14.04.2023 20:30 22:30 62,721
FC Schalke 04 - SV Werder Bremen (S) 29.04.2023 18:30 20:30 62,721
FC Schalke 04 - Eintracht Frankfurt (S) 20.05.2023 15:30 17:30 62,721
Herbert Grönemeyer (C) 09.06.2023 20:00 23:00 50,000
Olé auf Schalke Festival (C) 14.10.2023 13:00 22:00 45,000

events (two days) or soccer games took place at the VELTINS
Arena (see Table I). Although the concert events took place
mainly at night, the soccer games started at different times
(15:30, 18:30, and 20:30).

The average LAF values are shown for each of the four
groups in Figure 5 (sensor 3) and Figure 6 (sensor 5). In
general, the noise level values recorded closer to the stadium
(sensor 3) show a greater variance as indicated by the larger
error bars. As expected, LAF values are higher during the
day than during the night and higher during the week than
on weekends. When focusing on public events, we generally
observe an increase in noise, especially in the afternoon and
evening. Sensor 5 captures the noise of arriving and departing
fans before and after concerts in the stadium.

Using the "Olé auf Schalke" concert as an example, one can
recognize in Figure 6 corresponding loudness peaks between
10:00 and 13:00 as well as after 20:00 (blue dashed line). In
particular, we observe high LAF values during 00:00-01:00,
resulting in a high standard deviation for the concert curves in
both sensors.

For soccer matches, we expect a reduced noise level during
half-time breaks, which can be seen in Figure 5 around 16:15,
19:15, and 21:15, as expected from the three soccer matches
that started at different times. Although we anticipated that
soccer events would have higher noise levels than concert
events due to a larger number of spectators (62,721 versus
50,000), sensor 3 indicates that concert events have higher
noise levels than soccer events. In contrast, on sensor 5, soccer
events exhibit higher noise levels between 13:30 and 19:00,
which we assume is due to the transport between the tram
station and the arena. We will discuss this in more detail in
Section IV-E.

B. (RQ2): Influence of Local Weather Conditions

Local weather conditions can significantly affect noise
measurements and sound event detection (SED). Wind, in
particular, can create substantial background noise captured in
sensor microphones. By studying the correlation between wind
speed and the probability of wind noise detected by the SED
model, we aim to filter out wind-related noise, ensuring that
other sound sources are accurately identified.

For this experiment, we used wind speed measure-
ments recorded at the “ERLE” weather monitoring station
(IGELSE58) located at 51.56°N, 7.09°E (elevation 42 m) 3

every 4 minutes. We resampled the measurements to a 15-
minute time resolution. We compared the wind speed data (in

3https://www.wunderground.com/weather/de/gelsenkirchen



Fig. 5: Noise monitoring near the arena (Sensor 3) on weekdays, weekends and major events

Fig. 6: Noise monitoring near the tram station (Sensor 5) on weekdays, weekends and major events

km/h) with the probability of the wind noise class detected
by the SED model on days with high wind speeds, which are
listed in Table II. Figures 7 and 8 illustrate the wind speed
and wind probability values over the course of two selected
days in November 2023 with a high and a low average wind
speed, respectively.

In general, we observe that wind noise probability detected
by the SED model does not show a significant correlation
with the wind speed data. On days with high wind speeds,
the probability of detecting wind noise is consistently high,
as expected, except for the last day (28.11.2023), where
the probability decreases when the wind speed falls below
2 km/h. However, it seems that the SED model is not able to
distinguish between wind noise from different levels of wind
speed. Although the characteristic sounds of strong and weak
winds differ, we assume that the wind noise examples used to
train the SED model capture various wind speeds. Our initial
objective was to determine whether wind had any influence
on our recordings. We focused primarily on comparing our

TABLE II: Correlation between wind speed and wind class
(SED) from Sensor 3.

Date Correlation (Sensor3) Avereage wind speed (km/h)
16.04.2023 0.12 4.3
19.04.2023 -0.14 4.1
02.11.2023 0.38 8.5
04.11.2023 0.5 5.1
24.11.2023 0.16 3.1
28.11.2023 0.65 3.1

existing recording data with available online wind speed data.
Therefore, we excluded wind direction and other factors from
our analysis. These were outside our main focus but could be
explored in future research for more insights.

C. (RQ3): Temporal Correlation between Noise Level and
Active Sound Sources

This experiment aims to identify the sound sources that
contribute the most to the overall noise level. Such findings can
lead to more effective noise control strategies at specific sensor



Fig. 7: Wind Speed and wind probability on 02.11.2023

Fig. 8: Wind Speed and wind probability on 28.11.2023

Fig. 9: A temporal correlation during major events (soccer
matched and concerts) between noise level and sound class
from sensor 5

locations. We computed the Pearson correlation coefficient
between LAF measurements and SED predictions of sensor 5
within a 15-minute time resolution during both shorter sampling
periods (major events, see Section IV-A) and a longer sampling
period (April to November 2023). In Figure 9 and Figure 10,
respectively, the sound classes detected by the SED model are
shown in descending order, ranked according to the correlation
coefficients r for both scenarios. The five main sound events
that correlate with high noise levels are speech, cheering,
hammer, glass break, and scream. In contrast, during long
periods from April to November (Figure 10), the top five
sound events are scream, speech, lawn mower, cheering and
birds. Considering the time of the season in the data is also
important, as certain sounds such as lawn mower (or other
sounds of outdoor activity) are not expected during the winter
season.

D. (RQ4): Noise Level Forecasting

In this experiment, our objective was to develop forecasting
models to predict noise levels based on past measurements. This
predictive ability will help implement noise control strategies
and support noise pollution management at event locations.

We evaluated six different time series models introduced
in Section III-C based on LAF measurements from sensor 3
with a 15-minute time resolution. For single-step input models
(Baseline, Linear, and Dense), we predict the value at a given

Fig. 10: A temporal correlation during April-November 2023
between noise level and sound class from sensor 5

time step based on the value at the previous time step. In
contrast, for multi-step input models (Multi-step dense, LSTM,
and Multi-LSTM), we use a longer context (such as 96 time
steps, i. e., 24 hours) to predict the next value. As listed in Table
III, we designed four experiments to systematically investigate
how predicting LAF values depends on the temporal context
covered by the training data. The duration covered by the
training data ranges from half a month (Experiment 1) to three
months (Experiment 4).

The model was trained and evaluated using the Mean
Absolute Error (MAE) metric defined as

MAE =
1

N

N∑
i=1

|yi − ŷi| (1)

with N denoting the length of the test sequence and yi and
ŷi denoting the true and predicted value at the i-th timestep,
respectively.

Table IV presents the evaluation results grouped by forecast
model and experiment. We draw the following conclusions
regarding the noise forecasting around the ARENA. First, the
Linear, Dense, and Multi-step dense models can not surpass
the baseline model due to their limited modeling capacity.
Secondly, the Multi-LSTM model is the most effective model
as it demonstrates the lowest and most consistent MAE values
across all experiments. Interestingly, adding more training data
does not necessarily improve performance. Instead, we observe
the same performance in predicting LAF values for half, one,
or two months of training data (Experiments 1-3) and worse
performance for three months of training data (Experiment
4). Moreover, simple LSTM models do not capture sudden
changes in noise patterns effectively. This limitation highlights
the need for more sophisticated models such as Multi-LSTM to
handle the dynamic nature of noise levels during major events.

TABLE III: Time coverage of training and test data used for
evaluating loudness forecasting models.

Experiment Training data Testing data
Experiment 1 Second half of May 2023 June 2023
Experiment 2 May 2023 June 2023
Experiment 3 May, June 2023 July 2023
Experiment 4 May, June, July 2023 August 2023



TABLE IV: Evaluation results of all experiments.

Model MAE1 MAE2 MAE3 MAE4 Model Params
Baseline 0.846 0.847 0.867 0.896 -
Linear 0.844 0.843 0.864 0.891 2
Dense 0.844 0.844 0.864 0.890 4,353

Multi-step dense 1.274 1.211 1.052 0.952 4,193
Single LSTM 0.866 0.828 0.833 0.845 10,451
Multi-LSTM 0.809 0.809 0.809 0.834 338,049

TABLE V: ANOVA results between each group of events for
noise levels at different Sensors

Sensor Event Type Avg Loudness (dB) Std Dev (dB) F-statistic p-value
Sensor 3 Concerts 59.53 9.56 141.6 8.85e-29

Soccer Games 49.05 9.39
Sensor 5 Concerts 56.98 6.06 0.27 0.61

Soccer Games 57.35 8.53

E. (RQ5): Influence of Event Type and Number of Spectators

Following RQ4, where we predicted the average loudness
curve over a month without specifically considering events
with higher loudness, we observed that the predictions were
generally good, but failed to accurately capture sudden changes
in noise levels. Therefore, it is crucial to account for events
and other factors such as the number of participants to improve
the accuracy of noise forecasting algorithms in the future.

A one-way Analysis of Variance (ANOVA) was performed
to compare the average loudness calculated over days of events
between the two event groups shown in Table I (3 soccer games
and 2 concerts). For sensor 3, the analysis revealed a statistically
significant difference, with concerts being significantly louder
(F = 141.61, p < 0.001) than sport events. In contrast, sensor
5 did not show a significant difference in noise levels between
concerts and soccer games (F = 0.27, p = 0.606). Detailed
results of ANOVA are shown in Table V. In addition, the
scatter plot in Figure 11 illustrates the relationship between
average loudness (in dBA) and audience size for concerts and
soccer games, measured by both sensors.

From these results, we conclude that concerts are generally
louder than soccer games at Sensor 3, but this difference is
not observed at Sensor 5. This indicates that the location of
the noise measurement sensors relative to the venue of the
event clearly affects the noise levels observed (compare Figure
2). Moreover, the type of event and its specific characteristics
(e.g., music vs. crowd cheering) have a stronger influence on
noise pollution than the number of spectators.

V. CONCLUSION

In this paper, we analyzed long-term measurement data
to capture both noise levels and predominant sound sources
around the VELTINS arena in Gelsenkirchen, Germany. Our
study aimed to provide information on patterns, influences, and
sources of noise, and to evaluate traditional methods based on
deep learning for noise level forecasting. We addressed five
key research questions to achieve these objectives.

Our findings revealed several long-term repetition patterns,
such as daily rush hour traffic and spectator movements
during events, which help to understand regular fluctuations in
noise levels. We also observed a significant influence of local

Fig. 11: Comparison of average loudness (from sensor 3 and
5) in each events and audience sizes for concerts and soccer
games

weather conditions, particularly wind, on noise measurements.
This correlation allows for filtering out wind-related noise
to ensure accurate identification of other sound sources in
the future. During events, specific sound sources such as
speech, cheering, and mechanical noises were identified as
the main contributors to high noise levels. In terms of noise
forecasting, the Multi-LSTM model proved to be the most
effective, showing the lowest and most consistent MAE values
in different training scenarios. However, more training data
did not necessarily improve performance, highlighting the
importance of data quality and relevance. Our ANOVA analysis
and scatter plots demonstrated that concerts generally produce
higher average loudness compared to soccer games, with
significant differences observed at one sensor location but
not the other. This indicates that the placement of the acoustic
sensors relative to the event venue is crucial for accurate noise
measurement. Furthermore, the number of participants alone
is not a straightforward predictor of noise levels, as the type
of event and its characteristics contribute significantly to the
generated noise.

For future work, we propose enhancing noise forecasting by
developing multivariate models that incorporate multiple input
data sources. Factors such as work day versus weekend, day
versus night, and other contextual variables could be included
in deep learning models for time series analysis. More complex
models that consider these additional factors could lead to better
noise forecasting before, during, and after larger events at the
arena.
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