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Abstract—As a contribution to addressing the challenges posed
by climate change, acoustic ecology, and in particular the study
of changes in soundscapes, provides an opportunity to better
understand and subsequently manage climate change. This paper
focuses on the development of new spectrogram-based analysis
methods to expand the possibilities of comparative analysis of
soundscapes. The database to be analysed with the new methods
is provided by the WikliNathi project, a long-term monitoring
study to investigate the sonic changes of populations of living
organisms as well as geophone and anthropophone sounds in
a nature reserve. The developed methods of analysis will be
presented in detail. Selected audio recordings are analysed for
changes in the sounds of great tits, grasshoppers and frogs from
2018 to 2023 using spectral flatness, temporal flatness and onset
detection in aligned time-frequency regions. The evaluation of
the results shows that the proposed new methods can be used to
obtain more detailed and complementary results in future studies
as part of this and other bioacoustic projects.

Index Terms—Ecoacoustics, soundscape analysis, spectrogram-
based analysis, spectral flatness measure, temporal flatness mea-
sure

I. INTRODUCTION

Climate change, urban sprawl and the intensification of
agriculture are destroying the habitats of our animals and
plants [1] [2]. It is expected that over a million species could
become extinct in the next few decades. Every species that
disappears increases the risk of the collapse of important
ecosystems and thus the continued existence of humanity
[3]. Living organisms also have to adapt their gait to noise
pollution in order to survive [4] [5]. It is therefore essential
that we listen to our environment and take steps to counteract
these catastrophic predictions. One way to do this is to do a
long-term analysis of soundscapes [6] in nature.

The long-term nature reserve ambisonics recording project
”WikliNathi” (a short form of “Wie klingt Natur hier?” in
English: What does nature sound like here? [7]) has taken
up this task and has been analysing the soundscapes of the
”bird island” (Vogelinsel) nature reserve at lake Altmiihl in
Germany since 2017. The project is described in [8]. As part
of the WikliNathi project, a two-hour ambisonic recording is
made at the same location every month and each recording is
analysed by hand according to a defined tagging method (the
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method is described in section II-B in detail). It is obvious that
a trained deep neural network can be used to add an automated
tagging.

As an alternative path to currently common Al-based sound
analysis we were interested to extend the already existing anal-
ysis methods with spectrum-based signal analysis. Since we
are interested in the development including slight changes in
the soundscape of the Altmiihlsee, and the Al-based analyses
useful for us only tell us which species or sound appears
when, we would like to have information about details in the
spectrum of the soundscape. The spectrogram-based methods
tested for their relevance and described in this paper do offer
these details already in the stage of development we present
here in this paper. The methods are spectral and temporal
flatness analysis as well as onset detection [8] [9] operating
on equal time-frequency regions instead of whole magnitude
spectra.

A long-term perspective is an ’internet of bioacoustic
things,” in which lightweight recording stations perform first
processing stages and transmit only selected time-frequency
regions to servers, which have the capacities for complex Al-
based analysis. An optimisation of the recording stations with
respect to computational complexity and transmission band-
width helps to avoid counterproductive energy consumption.

Section II begins with a brief explanation of how large
amounts of audio data are currently analysed. This chapter also
describes the areas in which the methods used in this thesis are
applied. Our high motivation, which is based on our interest
and love of nature, as well as our will to contribute to saving
this planet with the developments presented here, is explained
in the following section III. Next, the methods of analysis and
their mathematical definitions used in the present work are
described in section IV and the results obtained are presented
in V. During the processes of development and application to
our recordings, we became aware of many opportunities for
further research. These opportunities are presented in section
VI. And finally in the following section we draw conclusions
of our investigation.

First outcomes of this research show that onset detection
and a combination of spectral and temporal flatness patterns



can be used to visualise the sound characteristics of different
organisms for an initial manual evaluation. Information about
frequencies, amplitude variation within a sampled region and
changes in temporal and spectral flatness can be documented.
For example, it was possible to see that the sound of grasshop-
pers changed during the period analysed and that great tits
also expanded their frequency band during the lockdown. The
analysis of frogs also showed a decrease in activity during the
period analysed.

II. RELATED WORK

The importance of soundscapes has already been empha-
sised many times [10] [11] [12].

A. Databases of Soundscapes

Databases hosting lots of recordings of soundscapes from
varying places are available (e.g. [13] [14] [15] [16]).

The question how large databases of soundscape recordings
can be treated has been addressed [17].

Most of the databases host a lot of soundscape recordings
from different places. There are some databases including
longer term recordings of the same spot such as the database
of the QUT Ecoacoustics project (c.f. [18]).

B. The WikliNathi project

The WikliNathi project we are relating here to, is specific
in so far as it does not collect soundscapes of many different
places in the world but monthly recordings of always the same
spot in a nature reserve over an as long as possible time. It
was inspired by Garth Paine and started as a satellite project
of the listen(n) project [15] in 2017.

The recordings of the WikliNathi project are being done
since October 2017. Each recording has a duration of two
hours and starts one hour before sunset. Earlier recordings
had shown that the differences in the soundscape were greatest
when changing from day to night and vice versa. As we were
interested in getting the widest range of differences in the
soundscape, and for the pragmatic reason that recording at
sunset fitted better into our daily work schedule than recording
at sunrise, the time of two hours around sunset was chosen
for the recordings.

The exact recording location in the Vogelinsel nature reserve
was chosen because of its wealth of different sounds - both
from animals (biophony) and, for example, from the wind
(geophony). It lies between two lakes. It also contains the
sounds of a distant road as well as sounds of people (anthro-
pophony) staying at the Altmiihlsee. The recordings are carried
out with a first-order ambisonic microphone (Soundfield SPS
200). To our knowledge there is no other long-term soundscape
monitoring project available offering recordings of the same
spot in a nature reserve for more than six years in a 3D audio
format. For a more thorough description of the project and
first analysis results see [8] (One will not find the acronym
”WikliNathi” as this term was coined in 2023).

As we want to be compatible with the listen(n) project [15]
and its method of tagging, the tagging of our recordings is

done in accordance with the method proposed by Paine [19].
The terms to be used for labeling are predetermined [19, p. 5].
Time ranges in which frogs croak, for example, are marked
with regions in a DAW (digital audio workstation, in our case
Reaper) manually. When the tagging is completely done a .csv
file is created from the labelled regions. Taggings are done
after the recordings. The persons doing the taggings are stu-
dents of Ansbach University of Applied Sciences specialising
in audio and interested in the WikliNathi project.

C. Al-based Analysis Methods

Computer aided analysis is done with commercial tools
like Arbimon of Rainforest Connection [20], Raven of the
Cornell Lab of Ornithology [21] or BirdNet of the joint work
between the Cornell University and the Chemnitz University
of Technology [22].

OpenSoundscape (OPSO) is a free and open source Python
utility library to analyse bioacoustic data [23]. The authors
of this project mention ... the gold standard method for most
classification tasks is considered to be deep learning, especially
using convolutional neural networks” [23, p. 2323]. Overviews
of methods to automatically detect and localize bio sounds in
soundscape recordings can be found for example in [17, p. 5].

Similiar to OpenSoundscape scikit-maad [24] makes use of
Phython scripts for machine learning in order to detect spe-
cific sounds in soundscape recordings. In the first processing
stages, it provides detection of general regions of interest by
simple amplitude thresholding or more advanced spectrogram
based clustering techniques. For more specific processing a
combination of 2D wavelet decomposition and unsupervised
learning is integrated and interfacing to deep learning modules
is provided. One interesting feature is the support of sound
propagation studies for enabling the estimation of distances
[25].

Another variant of improved machine learning methods for
better (with fewer errors) recognition of bird species in a
soundscape recording can be found in bambird [26].

These tools are mainly built to recognize which species are
making sounds in a recording and thus are to be found at the
spot where the recording took place.

It is obvious that neural network based analysis tools do
come into use for the WikliNathi project. However, with
respect to the above mentioned tools it should be mentioned
that Arbimon is for pragmatic reasons not suitable for the
WikliNathi project due to its terms of use. For analysis it is
necessary to load up material on the Arbimon website. By
uploading material we would have to grant the Rainforest
Connection the right to give its affiliates and third parties a
non-exclusive, royalty-free, perpetual and irrevocable licence
to use, reproduce, modify, adapt, translate and create derivative
works from our uploaded sound recordings [27]. Therefore we
will not look closer at the functions of Arbimon.

The Raven software is built for recording, visualisation,
measurement and analysis of sounds. Methods to analyse
recordings include a band limited energy detector as well
as an amplitude detector. Recent updates of the software



include machine learning to detect sounds. TensorFlow CNN
(TF) models are used and four existing Al models have been
implemented [28]. According to the tech specs of the Raven
software, bit sets of recorded data have to be split into smaller
so called ”pages”. While the machine learning functions are
suitable for our analysis, splitting all of our recordings into the
required small pages would make analysing all of our monthly
two-hour recordings complicated. It would be useful to know
in advance which sections of our recordings are meaningful
for analysis by the AI models.

The BirdNET project [22] is based on trained deep artificial
neural network with sounds of birds to be identified. The
creators of the BirdNET project are convinced that these Al
technologies outperform common signal processing techniques
to identify natural sounds [22, p. 1]. The BirdNET App as well
is optimized to analyse small chunks of recordings. It does not
allow to handle the big sizes of data we are dealing with in
one go per recording.

As an alternative the CornellLab for example offers algo-
rithms and mobile apps like Merlin BirdID to recognise birds
by their voices [29]. We examined this to be a useful tool
in order to identify birds one hears in our recordings. To
minimize the chance of wrong bird identification, a location
can be entered in the settings. It is then figured out which
kinds of birds can be expected in the region of the entered
location. And the number of possible bird species selected for
identification is reduced to the number of bird species expected
on site.

The Merlin BirdID is also Al-based. It therefore remains
unclear how exactly the identification process works. We only
know about a trained Al model. However, we are interested
in understanding exactly how the analysis process works and
we would like to be able to adapt the analysis method to
specific tasks that we consider relevant when searching for
slight changes in the soundscape.

D. Spectrogram-based Analysis Methods

The precondition to see exactly how the analysis process
works leads our view to spectrogram-based analysis. An early
analysis synthesis software package implemented in R and
extended for bioacoustic analysis can be found in seewave
[30] [31].

Pijanowski presents a list of major categories used by
soundscape ecologists when they want to descripe soundscapes
with indices [32]. We find the category of acoustic indices
which includes for example spectral statistics, spectral centroid
or spectral entropy [32, p. 240]. However, spectral flatness or
temporal flatness are not mentioned there.

The spectral flatness method is often used in audio signal
processing and was first used in the context of linear prediction
of speech signals [33] and for practical applications adapted to
calculation from DFT spectra [34]. Later it was applied in the
fields of perceptual audio coding [35] and music information
retrieval [36]. This enables the creation of an audio match and
identification and thus the generation of audio fingerprints.

This method is also important for the classification of
audio data [37]. Currently, a manual or automatic tagging
system is used to identify the genre, artist, instruments and
structure of a song. This makes it possible to classify the songs
without listening to them. Spectral methods such as centroid
(SC), flatness (SF) and spread (SS) as well as a temporal
spectral feature are often used for this [38]. Spectral flatness
is also used for acoustic and speech signal processing, such
as recognising voice activity [37].

Music Information Retrieval (MIR) is currently endeavour-
ing to develop automatic music transcriptions (AMT). These
convert audio signals into symbolic notations such as musical
notes or scores. One proven method for this is onset frame
detection, as the energy of the attack is the easiest to identify
and also the most conspicuous, especially on the piano [39].

The inverse spectral flatness, which can be regarded as a
measure of waveform predictability [34], has already been
tested in bioacoustics. In a study, the short-time energy, the
Fourier transform phase-based entropy and the inverse spectral
flatness (ISF) were evaluated for their efficiency. This was
primarily tested on bird calls. It was found that the ISF was
the most effective method for this, as it segmented the bird
calls more accurately. It also makes it easier to distinguish
between background and call activity regions [40].

Other bioacoustic research like [41] and [42] applied the SF
without inversion to short-term spectra, where the former ad-
ditionally computes a spectral novelty to detect signal onsets.

III. MOTIVATION

The general main driving motivation of the WikliNathi
project is to care about nature by listening to it and to make
this listening processes available to the public via the internet.
Furthermore, we want to provide a long-term data set of nature
reserve ambisonic recordings with manual annotations and
later automated analyses of the soundscape for the bioacoustics
and soundscape research community.

Part of our work is also the development and testing of
analytical methods that we consider useful for our specific
recordings in addition to the existing methods. We are partic-
ularly interested in whether and, if so, how the soundscape
at our recording location changes over the years. We are also
interested in whether changes in sound can be linked to climate
change and whether we can learn something new about climate
change as a result. We hope that this new knowledge will
strengthen our ability to deal with the problems of advancing
climate change.

It is obvious that the automatic labelling of natural sounds
will be a great help in analysing eco-acoustic soundscapes.
The question is how this can ideally be done. We have already
mentioned several existing methods and defined the ones that
are relevant to us.

In view of the disadvantage to split recordings into smaller
pages (e.g. Raven software, see section II-C) we are motivated
to develop a method to detect in advance which regions of
recordings are suitable to be analysed for specific analysis
goals. Ideally, these are CPU-efficient algorithms that can be



used live on location during recordings and mark relevant
regions in real time. The marked regions can then be analysed
after the recording using more complex and computationally
intensive methods.

Sound recognition apps, such as the Merlin BirdID [29] only
provide partial information, e.g. the presence of a species, but
lack information such as intensity or frequency structure of
natural sounds. This means that this system cannot provide
spectrally detailed results for a soundscape. For example, we
know which animal species were tagged at a certain point in
time, but we lack structured information about the spectral
characteristics of the detected sounds in the ecosystem. As a
consequence we are motivated to develop a method allowing
additional information about the sounds in an ecosystem.

Therefore, even when considering the success of Al-based
methods, we are nevertheless convinced that supporting new
methods of signal processing techniques could still be used
to enrich the standards for comprehensive and automated
soundscape analysis because they allow to see more details
of detected sound events.

As mentioned in section II-B the WikliNathi recordings
have been manually tagged by different persons. When looking
at the tagging results, it can be seen that different interpreta-
tions of the defined tagging method and the specified terms
to be used when tagging sometimes lead to slightly different
personal tagging styles. The manual tagging style can so to say
vary from person to person. In order to be able to compare
the tagging lists on a uniform basis, we are very interested in
identifying the respective tagging styles and, in a second step,
adapting all tagging lists to a tagging style that is as uniform
as possible.

By developing spectrogram-based analysis methods, we
hope to support the identification of specific manual tag-
ging styles to further standardize the tagging styles of our
recordings. In addition, we would like to facilitate future
manual tagging by supporting the process through our analysis
algorithms.

We expect that the experience gained from the application
of our developments will expand the ideas for further inves-
tigations. We are convinced that a pre-identification of the
regions to be investigated can help to analyse large amounts
of soundscape recordings faster and more efficiently. This can
help to detect changes in ecosystems more quickly. We are
also convinced that this will provide a better basis for the
development of protective measures for living organisms.

Although this is not the topic of this paper, we would
like to mention here our motivation that spectrogram-based
methods are of interest to us since our database contains
3D audio recordings (first-order ambisonics). This means that
we can e.g. distinguish between the upper and lower half of
the recording or between front and back etc. We can apply
spectrogram-based analysis algorithms to the split spatial parts
of the recordings and compare the results. While we usually
only get information from an Al-based analysis about which
sounds took place when at the recording location, with our
methodology we expect results that give us insights into spatial

aspects of the 3D soundscape where we make our recordings.

IV. METHOD

The task of the present work is to develop additional digital
signal analysis methods that are suitable for the investigation
of nature soundscapes. The signal analysis methods developed
here were mostly based on time-frequency representations
obtained from short-time Fourier transform (STFT) using
Hann windows. Based on those, spectral flatness analysis
was performed to distinguish between noisy and transient
regions exposing high flatness and tonal components with
low flatness. As different species often produce sounds in
different frequency regions, spectral flatness was evaluated
on multiple segments of each short-time magnitude spectrum
instead of whole spectra. This approach was previously used
in perceptual models for audio coding applications [35]. Addi-
tionally, temporal flatness [43] was evaluated on magnitudes of
individual spectral bins from multiple consecutive frames from
STFT analysis with lower transform length leading to lower
spectral resolution. The temporal flatness measure (TFM) is
high for relatively stationary noise and for tonal components,
while it gets low for pulse-like transients.

Since results based on different time-frequency resolu-
tions were to be combined, odd-frequency discrete Fourier
transform (here abbreviated as ODFT) was used instead of
regular DFT. Shifts for obtaining odd-time transforms were
not applied, as their influence was regarded less relevant for
the selected transform lengths (see below).

For the spectral flatness analysis recordings sampled at
48 kHz were transformed with window length 1024 and hop
size 512. One spectral flatness measure (SFM) value was then
calculated for each segment of 16 bins resulting in 32 SFM
values per frame covering the range up to 24 kHz. For the
temporal flatness analysis, a transform window length of 64
with a hop size of 32 was chosen. For each set of 16 frames
corresponding to the 512 samples in the centre of a frame
used for SFM analysis, a temporal flatness measure value
was obtained for each of the 32 frequency bins. Thus, SFM
and TFM shared the time-frequency tiling of 32 bands, each
covering a frequency range of 750 Hz and a time interval of
512 samples, i.e. 10.7 ms. This enabled further joint processing
of the analysis results.

The following SFM calculation was applied:

Ky 15 1/16
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with segment index .S, frame index F', segment start bin index
k; = 165, and bin squared magnitude my, r.



Correspondingly, TFM is obtained from:
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with segment index S, short frame start index f; = 16F’, and
short frame bin squared magnitude pis, ¢. The frame alignment
explained above requires that the windows of the longer
transform range from sample 512F — 256 to 512F + 767 and
those of the shorter transform from 32f — 16 to 32f + 47.

Since TFM does not expose onsets well, if they are followed
by relatively constant amplitude, a very simple onset indicator
function was added to the analysis tools operating on the
STFTs with the shorter frame length:

Osr=max{us¢l|fs < f<fs+15} —pss , (3

with indices corresponding to those of the TFM calculation.

While SFM and TFM values are by definition restricted to
the range between 0 and 1, the onset indicator values depend
on the signal levels.

As all three share the same time-frequency resolution, they
can be visualised in similar 2D-plots. Additionally, combined
thresholding operations can be applied to them. For example,
an operation like

TS,F = SFMS,F < thrspy and TFM&F > thrrey (4)

results in a binary output indicating regions containing strong
tonal components, e.g. representing a frue condition by a 1
and a false condition by a 0.

An additional accumulation over a time-frequency neigh-
bourhood can then be applied to emphasise events covering a
wider temporal and/or spectral region, e.g. longer tones, also
with eventually changing frequencies:

S+Ls F+Lr

Tsp= >, >, Tup (5)

s=S—Lg f=F—Lgp

with a maximum distance in frequency direction of Lg seg-
ments and a maximum distance in time direction of L1 frames.

For verification of manual annotations and indications
generated by the above described analysis tools, a regular
spectrogram visualisation was implemented, which offered
the capability to save and play back selected time-frequency
regions.

To check whether the algorithms fulfil the requirements,
the figures were compared with the previously created tagging
lists. If the algorithms indicated frogs, for example, it was
checked whether frog croaks were noted in the tagging lists.

V. RESULTS

To investigate the effect of the numbers, they were tested by
analysing three different species. The activity of the animals at
the Altmiihlsee is highest in the summer months, so months in
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Fig. 1. Comparison of blue tit (between 0 and 1.000 sec.), great tit (between
1.000 and 2.000, 3.000 and 5.000) and chiffchaff (between 2.500 and 3.000
sec.) 2019

this season were selected for this first analysis and test of the
scripts. The sounds of great tits were analysed for the first 20
minutes of the August recordings of the WikliNathi project in
the years 2018-2023, those of grasshoppers in July and August
of the same years and those of frogs in August of the years
2018/19/21/22.

For the latter two, the hand made tagging lists of each
recording were used to determine the time periods to be
studied. The Merlin BirdID app was used to detect the
great tits. The identified sequences were filtered in the DAW
Reaper and exported as mono tracks. According to the above
mentioned methods Python functions were written to analyse
and compare the sequences for similarities and differences.

For evaluating the capabilities of the combined time-
frequency region based analysis algorithms, some adjustable
parameter values had to be tuned with the help of different
recordings and the accompanying annotations.

A. Analysis Data

When analysing the chirping of the great tit, each of the
figures was able to give a visual representation of this sound.
For this purpose, a clipping value for limiting the maximum
value of the onset detection was set to 0.04, the sfm threshold
thrspar was set to 0.5, and the tfm threshold thrrpps to
0.9 for obtaining an accumulated classifier. The figures show
that it is possible to visualise how different species differ
from one another. Figures 1, 2 and 3 show a sequence of
a blue tit, a great tit, a chiffchaff and then two great tits. The
spectrogram (see figure 1) shows that the blue tit sings about
0.2 kHz lower than the great tit and the chiffchaff uses a higher
frequency band. This can also be seen using the accumulated
classifier (see figure 3) and onset detection (see figure 2). The
accumulated classifier is particularly useful for analysis, as
a recurring pattern can be seen very clearly. The whistle is
divided into three blocks of about 4 kHz each. This is visible
individually, in two or three blocks. The first ranges from 1.4
to 5.2 kHz, the second from 2.2 to 6 kHz and the last from 3
to 7 kHz.



18 onsets 10.040

0.035
0.030
0.025
0.020

l 0.015

I‘I‘ I‘I Il Ir\ | H‘| i \'
I l IIIIII“IIHHIEIEIIIIIII‘I‘IIIIIIII‘IIIIII .‘ l

] 0 o N o
o N & 2 5S

time [s]

0.010

0.005

II“IIIIIIIIII\III‘IIIIIII

0.000

Fig. 2. Comparison of blue tit (between 0 and 1.000 sec.), great tit (between
1.000 and 2.000, 3.000 and 5.000) and chiffchaff (between 2.500 and 3.000
sec.) 2019 using onset

accumulated classifiers

o [ N w IS v o ~ e

8
Q!
time [s]

Fig. 3. Comparison of blue tit (between 0 and 1.000 sec.), great tit (between
1.000 and 2.000, 3.000 and 5.000) and chiffchaff (between 2.500 and 3.000
sec.) 2019 using accumulated classifier

It is interesting to note that a change in the sound was
visualised using onset detection. In 2021, the frequency range
changed from 3-5 kHz, (see figure 4) to 4-8 kHz, (see figure 5)
as did the timing of the whistling. It continued to increase in
frequency, but only ended after two seconds. This phenomenon
is also visible in a sequence in 2022. In 2023, this change
can no longer be recognised. It is possible that the lower
anthropogenic noise exposure during the corona lockdown is
reflected here. It is also conceivable that great tits transmitted
certain information through this type of whistling in these
years.

No clear statement can be made about the sfm and tfm for
grasshoppers, as these fluctuated in each month and year. This
can be explained by the results of the onset figure. Here it can
be seen that the frequency band and the amplitude variance
change depending on the temperature. The colder it gets, the
slower the movement of locusts becomes. The same species of
grasshopper therefore sounds different at cooler temperatures
than on a warmer day [44]. This can be seen in the following
diagrams. In 2020, (see figure 6) the activity of locusts was
characterised by a high amplitude variance and an extended
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Fig. 4. Sound of a great tit using onset 2018
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Fig. 5. Sound of a great tit using onset 2021

use of the frequency ranges. This is not the case in 2021, (see
figure 7) when temperatures were lower. In 2022, (see figure
8) the frequency band is wider than in 2020, although no large
temperature difference is apparent.

In July 2023 (see figure 9) an anomaly was observed. The
locust activity increased to 18 kHz and a distinctive rhythm
was detected. It is possible that a new species of locust has
colonised the bird island. It is also possible that a species that

onsets

W o o |

M\I\wIHI\IIIHIIIIIII“IIH‘II\III\I\I\lIlIIIIIInlll\ll\lllllhll\lllllII \IIIH-IIlIIII\IIIIIIIIIHIII\II\IIIII\I IIIIII‘IIIII}IIIIIIIIIIIEII\IIIMIII

o®

og o o
o® % o®

o o ©
i o o8 oo

0900 of
R A & &9

Q-
AT
time [s]

Fig. 6. Locusts 2020 (28,9° C), high activity due to warm temperature
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Fig. 8. Locusts 2022 (27,5° C), enlarged frequency band

is rarely active was heard this month. Another explanation
would be that grasshoppers are looking for a new frequency
band. This could already be observed in 2022, as shown in
the previous figure.

Onset detection is also the most meaningful for frogs due
to the changed sfm/tfm. The following figure 10 shows the
sounds of two ducks. The first two visible changes lie between
53.000 and 45.000 seconds followed by the activity of four
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Fig. 10. Comparison of Duck (first two visible change between 53.000 and
54.000 sec.) and Frog activity

frogs.
Frog 2018 | 2019 | 2020 | 2021 | 2022
Number of entries 10 5 - 7 2
Duration in seconds 382 625 - 180 35
TABLE I

TAGGED ACTIVITY OF FROGS

A comparison over the years shows a decrease in frog
activity. This may be related to the limited study period, which
is supported by the analysis of the tagging list (see Table I).
Looking at the tagging lists shows that ten frogs were recorded
in the tagging list in the month of August in 2018, five in
2019 and only two in 2022. The analysis also showed that
three entries in the tagging list were incorrect in 2021. Instead
of frogs, the quacking could have been attributed to ducks or
geese.

August is not a mating month, but the trend is striking and
should be monitored in the coming years, especially as the
frogs also croak outside this period when they are feeling well.
Assuming that the tagging lists have been carefully kept, this
conspicuousness may be a sign that the frogs are retreating,
or that their numbers are already declining, despite the large
areas of water in the reserve.

B. Evaluation of the Results

Using the new figures, it was possible to identify and
analyse the sound activity of different creatures. Certain
methods are better at identifying specific sound events. For
example, onset detection can be used to analyse the sound
of frogs, grasshoppers and great tits. The latter can also be
analysed using the accumulated classifier, as the sfm is more
pronounced in birds than in the other species studied. Such
recognised patterns complement the manual analysis with
information about the frequency response, amplitude variance
and energy fluctuation over time and the tonal proportion of
the creatures.

In addition, a basis has been created for the automated
analysis of sound recordings. This will make it possible in



the future to analyse large amounts of data specifically for
animals in which patterns have already been identified, and to
draw important conclusions about changes. Previous methods
have already made it possible to identify initial changes over
the years that could not be detected by the tagging site. This
was due to a lack of information and poor categorisation of
keywords in the tagging list. It is now possible to analyse any
species that is audible.

It was also possible to see that great tits increased their calls
in the years when noise pollution decreased. Grasshoppers also
expanded their frequency range during the period analysed. On
the other hand, the activity of frogs decreased.

The results of this work must always be considered in
relation to the period analysed. It is conceivable that anomalies
can only be found in this time window and do not indicate
any actual trends. Generally, a usability of the time-frequency
specific tools for the indication of interesting signal segments
for different analysis tasks can be seen.

VI. FUTURE WORK

The WikliNathi project looks at the soundscape of a nature
reserve, i.e. an area that is heavily protected from human
influences and characterised by a high level of species diver-
sity. It is therefore not possible to make a general statement
about population changes in Germany. A parallel observation
of the soundscape in a nearby city would be particularly
interesting in order to recognise whether the sound events
change more quickly or in a different way in this “non-
protected” environment. In this way, the added value of this
area could be evaluated. Nevertheless, it should be noted that
each of the figures can give precise results.

It is, of course, a future task to monitor the development
of Al-based analysis methods and to examine and then utilise
new relevant developments in connection with our issues.

With regard to the research strategy, to correlate
spectrogram-based analysis with tagging lists, the following
next steps are desirable:

Firstly, it would be useful to optimise the handmade tagging
lists. Since different people were doing the taggings over
the years an overall same style of the interpretation of the
tagging manual would be of help. To provide a better basis
for further analysis of the recordings, collective terms should
be replaced by terms fitting to the specific area of the bird
island and its main sounds that occur there. With the help
of the Merlin BirdID app, the term “birds” could, as a first
step, be recorded in terms of individual bird species and their
temporal occurrence.

Another idea would be to use the presented tools to point
to time-frequency regions, in which more complex algorithms
should analyse further sound events for patterns and charac-
teristics, analogous to the procedure of the methods used. The
results then can be used as a basis for the next step.

In this step the identified patterns can be used as a basis
for automation. This would require further optimisations of
the adjustable parameters to search for the recognised animal
features in the sound recordings.

Having identified these patters it would also be interesting
to train an Al model that could perform an analysis based on
the recognised patterns. Applying this model could be used
to identify the animals, including the figuring out when they
were active, and to document additional information about
sound changes. These results could also facilitate the manual
recording of the tagging list.

We have been developing new analysis methods based on
amplitude modulation frequency and sweep parameter esti-
mation. These methods have been prepared for the analysis
of longer periods of time and, e.g. detection of activity of
grasshoppers and crows. It is also a future work to use them
on a broad basis to analyse our sound files.

Due to the low computational complexity of the imple-
mented analysis tools, a development of lightweight recording
stations for use in remote areas seems realistic, so that only rel-
evant signal portions of the recordings need to be transmitted
to a more complex analysis station for accurate classifications
and evaluations.

As mentioned in section III, one further task of the future
is to split our 3D images into spatial fields and analyse
the different files with our algorithms to obtain information
about the spatial differences and occurrences in the immediate
vicinity of our recording spot.

VII. CONCLUSION

The focus of this work was to investigate to what extent
different signal analysis methods help to analyse the sound of
living organisms at the bird island of the Altmiihlsee. With the
help of a first set of spectrogram-based analysis tools it was
possible to carry out detailed investigations of onset, sfm, tfm
and the spectrogram itself. Based on the analyses, it can be
stated that the previous analysis methods can be supplemented,
especially for biophones. Our methods also allow the manually
produced tagging lists to be refined and specified.

The new methods help to identify patterns in different
animal species and can serve as a basis for future automated
analysis of large amounts of data. Onset detection is useful to
analyse the sounds of grasshoppers and frogs. For chickadees,
onset detection was found to be very accurate as well. These
findings will make it easier in the future to find animals whose
signals do not stand out and to include them in the analyses.

It was also found that great tits show slight changes in
their frequency ranges, which may be explained by changes in
noise pollution during the corona years. With regard to frogs,
the tagging list shows that their numbers slowly decrease in
August.

In addition, digital signal analysis methods also revealed
a change in sound. For the grasshoppers, the following ob-
servations are interesting. Firstly, the anomalies in the years
2022 and especially 2023, in which a change in intensity and
a change in the frequency range became visible, and secondly,
the rhythm of the grasshoppers in 2023, as the change could
be associated with a new species settling in the Altmiihlsee.



The presented manual evaluations of the frequency-selective
spectrogram-based analysis tools show their possible applica-
tion in a future ’internet of bioacoustic things’.
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