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Abstract—A fitting soundtrack can help a video better convey
its content and provide a better immersive experience. This paper
introduces a novel approach utilizing self-supervised learning
and contrastive learning to automatically recommend audio for
video content, thereby eliminating the need for manual labeling.
We use a dual-branch cross-modal embedding model that maps
both audio and video features into a common low-dimensional
space. The fit of various audio-video pairs can then be mod-
eled as inverse distance measure. In addition, a comparative
analysis of various temporal encoding methods is presented,
emphasizing the effectiveness of transformers in managing the
temporal information of audio-video matching tasks. Through
multiple experiments, we demonstrate that our model TIVM,
which integrates transformer encoders and using InfoNCE loss,
significantly improves the performance of audio-video matching
and surpasses traditional methods.

Index Terms—music recommendation, multi-modal, trans-
former

I. INTRODUCTION

Sound has played an integral role for movies for nearly a
century. The 1927 film The Jazz Singer marked the beginning
of commercial success for films with sound. It is notable for
being the first feature-length film with synchronized dialogue
and musical sequences, symbolizing the trend of combin-
ing music and visual arts [1], [2]. In films, music is often
used to propel the narrative, express character emotions, and
enhance immersion. Mundy explains how music intensifies
the emotional expression of visual content, deepens the au-
dience’s emotional experience, and how visuals and music
work together to create a unique viewing experience, similar
to the perfect matching of music and choreographed dance
movements [2].

With the rise of video platforms such as TikTok, YouTube,
and Instagram, a significant number of users engage with video
content daily, either by watching or creating their own videos.
Video creators often need to select or produce appropriate
background music, as effective background music is crucial
for enhancing viewer immersion and aiding the expression
of visual content [2]. Selecting suitable background music,
however, is not easy, especially for beginners or amateur
creators. The music needs to match the video’s emotional tone
and possibly align with the visual transitions. Additionally,
users may consider a multitude of other factors, including

prioritizing popular or trending songs to increase the potential
for exposure. Considering the multitude of factors and choices
involved, selecting appropriate music becomes a complex task.
This complexity justifies the need for an automated system
to assist in making informed choices. It can offer valuable
suggestions for users uncertain about music selection, thereby
lowering the barriers to video production. Such a system can
be implemented on devices that facilitate video production,
such as smartphones, computers, VR headsets, and other IOT
devices to improve production efficiency by reducing the
necessary time for music selection [3].

Existing solutions have several limitations. For example,
some suggest generating audio based on rhythms or video
content. However, audio generated from rhythms may lack
musicality due to a limited range of genres and instruments
[4]. Similarly, audio generated based on scene information
from video images, such as outdoor environments, is prone to
incorporating irrelevant noise and may suffer from poor audio
quality [5]. While many proposed models process features
through statistical methods extracted from videos and audio
tracks, they usually do not train using feature sequences that
contain rich temporal information [5]–[7]. Some proposed
solutions focus on physically matching audio to video by
identifying individuals who are talking or clapping [8] or aim
at generating foley effects that correspond to real-world sounds
such as footsteps or baby cries [9], [10], which focuses on a
local instead of global optimization for a necessarily narrow
set of scenarios. These approaches do not sufficiently meet
the creative and artistic needs of contemporary video creators.
For instance, effective video and audio content often includes
segments of buildup and climax, indicating that video and
audio sequences are interconnected at various temporal points
rather than existing as discrete categories such as train sounds,
speech, or baby cries.

To address these challenges, we aimed to develop a system
that recommends music for videos, ensuring that the audio
sources are of high quality and rich in variety. Our system
recommends entire songs for videos. We conducted the fol-
lowing work: Firstly, we reimplemented a well-known model
as our baseline and trained it on our data [6]. The model
leverages self-supervised learning and contrastive learning to
recommend audio for video sequences without the need for



manual labeling. In addition to the Triplet loss and intra-modal
structure loss used in the baseline, an additional InfoNCE
loss function [11], based on Noise Contrastive Estimation
(NCE), is employed. This function effectively learns useful
representations from data by contrasting positive and negative
samples. It is used to train the model in order to simplify it
while maintaining similar or even improved performance [11].
Secondly, we conducted a comparative analysis of various
temporal encoding methods for video and audio sequence
features. Our findings suggest that, among the methods we
tested, transformers are the most effective for encoding tem-
poral information in audio-video matching tasks [12]. Our
results provide evidence for the critical importance of long-
range dependencies in feature sequences for this task.

II. RELATED WORK

A. Music Video Synthesis

As early as 2004, Hua et al. introduced an automatic system
for generating music videos based on onset detection and
rhythm estimation of the given audio [13]. However, the
generation involved mostly the editing and synchronization of
raw video sources with the corresponding music. This method
is similar to the method described by Ohya and Morishima
in 2013 [14], who “remixed” existing videos to match the
music. Later, Wang et al. proposed a system for generating
sports music videos, which matched different music segments
to video content based on semantic cues such as cheers and
goals [15]. This system did not produce a complete musical
track but rather a collage of audio clips, and the absence of
clear sourcing for the audio materials compromised the audio
quality.

B. Music Generation for Videos

Other methods focus on generating music for existing
videos. Zhou et al. showed good results for generating wave-
form samples that are supposed to mimic realistic sounds,
such as the rustling of leaves, for videos captured in outdoor
environments [5]. This method lacked musical components
and could generate additional noise. Di et al. introduced a
method for generating background music for videos using a
controllable music transformer [4]. Trained for six genres and
five instruments, this method provides flexibility and control in
music generation, however, the audio quality of these MIDI-
based creations may not match the richness and fidelity of
music produced from high-quality recordings. Furthermore,
the constraints on genres and instruments seem to be limiting
for generic use cases.

C. Visual-Audio Matching

For video background music recommendations, Kuo et al.
utilized features such as color, texture, lighting, and motion,
along with musical characteristics like rhythm and timbre.
They applied multi-modal latent semantic analysis to capture
correlations between audio and visual terms extracted from
these features for music recommendation [16]. Hong et al.
proposed a dual-branch neural network model for cross-modal

recommendation between music and videos. They employed
both inter-modal ranking constraints such as triplet loss and
structural loss to train the model. However, their approach
did not incorporate any sequential information over time [17].
Van den Oord et al. introduced the use of InfoNCE to train
contrastive learning models [11]. Zhao et al. proposed a model
utilizing multi-level fusion features including video attributes
like color, texture, and light, along with music features such as
timbre and rhythm attributes to train a convolutional similarity
algorithm network for music recommendation [7]. Again, it
did not utilize sequential temporal information.

Visual-audio matching tasks also involve aligning audio
signals with videos. Afouras et al. employed self-supervised
learning to match audio to videos, which could be used to
identify and separate speech from multiple speakers in a video
[8]. Ghose and Prevost presented “AutoFoley,” a method for
matching foley sound effects, such as footsteps or clattering
objects, to video segments [18]. Similarly, Lin et al. presented
“Soundify,” a system for matching specific sound effects to
video scenes, such as the ringing of a bicycle bell or street
noise [10]. Their system also automated adjustments to the
sound effects’ volume and panning to enhance the audio-visual
matching. These approaches, however, focus on matching
discrete, physical audio cues to corresponding visual events
in a segmented manner, such as matching the sound of a baby
crying to a visual of a crying baby, or a bicycle bell to the
visual of a bicycle. Thus, these methods do not necessarily
create a continuous, holistic, and artistically integrated audio-
visual narrative. The need for such artistic correspondence in
music-video synthesis was highlighted by Surı́s et al. who
argue that this correspondence is crucial for enhancing the
overall viewer experience [19]. However, they did not detail
what constituted artistic features beyond stating that these are
not merely physical correspondences.

Our study aims to extend this previous work by conducting
a comparative analysis of various temporal encoding methods
for video and audio sequence features, with the goal to
understand the importance of temporal information in audio-
visual matching.

III. METHOD

Our model architecture, as detailed in Figure 1, adapts the
VM-NET framework, featuring dual processing pathways for
audio and video respectively, each with two to three linear
layers [6]. We incorporate a choice of either a Transformer or
an LSTM as the encoder, and employ the InfoNCE loss for
training [11], [12], [20].

A. Feature Extraction

We employ the VGGish and ResNet-50 models for pro-
cessing audio and visual data, respectively, from selected
music videos in the YouTube-8M Dataset [21], [22], [23]. We
also investigated OpenL3 [24] for extracting audio and video
features, but found no significant improvement in the results.
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Fig. 1. Model Architecture. We use Vggish and ResNet-50 to extract features from audio and video, respectively. The model consists of two separate pathways
for processing audio and video, each composed of two or three linear layers. Additionally, we have incorporated an encoder, choosing either a transformer or
an LSTM for comparison. The model is trained using the InfoNCE loss.

1) Audio Feature Extraction with VGGish: The VGGish
model [21], specifically designed for audio analysis, is a pre-
trained neural network model trained on a large-scale audio
dataset that extracts 128-dimensional embedding vectors with
a time resolution of 960 ms. The VGGish features have been
shown adept at encoding various audio patterns for various
tasks [21]. Given that our sample lengths are 15 s, these
features have the dimensionality (15, 128).

2) Visual Feature Extraction with ResNet-50: For visual
data, we utilized the well-known ResNet-50 model [22], which
is well-known for its effectiveness in image recognition. This
model, pre-trained on the ImageNet dataset, extracts detailed
visual features from each image to ensure comprehensive
coverage of the video content. For each video, we extracted
one frame per second to create an image feature sequence
for visual feature extraction. The ResNet-50 model outputs
a 1000-dimensional feature vector for each input frame. The
extracted features for our sample lengths result in a video
feature dimensionality of (15, 1000) for each input.

B. Baseline Model

In this study, we reimplemented the dual-branch embedding
neural network, VM-NET, to serve as our baseline model
[6]. Thus, the audio branch has three fully connected layers
with node counts of 2048, 1024, and 512. The video branch
is implemented with two fully connected layers, with node
counts of 2048 and 1024. The network incorporates ReLU
activation functions, dropout layers, batch normalization, and
L2 normalization. We apply both the cross-modal constraint
(Triplet Loss) and the soft intra-modal structural constraint,
integrating them with equal weighting to formulate the loss
function for the embedding network [25]. The Triplet Loss
aims to minimize the distance between the anchor and pos-
itive samples in the embedding space while maximizing the
distance to negative samples, with the top 200 most violated
cross-modal matches selected for optimization. The soft intra-
modal structure constraint aims to preserve the relative dis-
tance relationships among samples within the same modality

[6]. We set K = 10 for the intra-modal structure constraint,
where K controls the number of samples for which the relative
distance relationships need to be maintained between the
embedding space and the original space.

C. InfoNCE Loss for Cross-Modal Matching

InfoNCE should be well-suited for contrastive learning as it
efficiently handles numerous negative samples within a single
batch by treating all other samples as negatives [11]. This
method typically offers higher computational efficiency com-
pared to configurations that require a predetermined number
of triplets in each batch, and it can generate more effective
gradient signals. Furthermore, employing InfoNCE can reduce
the complexity of the model relative to using a combination
of triplet loss and intra-modal structure loss, as it obviates the
need for configuring parameters for the top Q most violated
matches and managing weighting parameters for two distinct
losses. It is defined as:

LInfoNCE = − log

(
exp(sim(u, v)/τ)∑K

k=1 exp(sim(u, vk)/τ)

)
(1)

where sim(u, v) denotes cosine similarity, optimizing the
model to distinguish between matching and non-matching
audio-video pairs effectively. We trained and compared using
the InfoNCE loss on top of the baseline model.

D. Encoding of Time Information

In the two-branch embedding network based on VM-NET
we experimented with incorporating an extra encoder for
processing temporal sequence information utilizing either an
LSTM or Transformer architecture. LSTM, as a specialized
type of RNN, can manage sequence information through a
series of gates that control the flow of information. These
gates include input, forget, and output gates, enabling LSTM to
selectively retain or discard information [20]. Unlike LSTM,
Transformers do not process sequences recursively. Instead,



they employ a self-attention mechanism that processes the en-
tire sequence simultaneously, allowing for high parallelization
and efficient handling of long-range dependencies [12].

1) LSTM: The model utilizes two bidirectional LSTM
layers to process audio and video features independently, with
dropout applied to avoid overfitting. The final LSTM output
is transformed into a 512-dimensional embedding space using
a linear layer, ReLU activation, and dropout.

2) Transformer: The Transformer approaches utilizes Posi-
tional Encoding to add sequence order information to the input
features, crucial for time-series data. The encoder itself then
includes multi-head attention and a feedforward network, nor-
malized and regularized with dropout, enhancing the model’s
capacity to interpret complex dependencies within sequences.
The final Transformer output is a 512-dimensional embedding.

IV. EXPERIMENTAL SETUP

In our experimental design, we investigated various input
feature sequence representations including the raw sequence
of features, their mean values, and the combination of features
means and the standard deviation. The variations also include
the different loss function mentioned above and the two
temporal encoding architectures. Thus, we arrive at seven
distinct experimental configurations.

A. Dataset

In our research, we have chosen to utilize a subset of the
YouTube-8M Dataset for training in audio-video matching
tasks. The YouTube-8M Dataset [23] is a vast dataset con-
taining over 6.1 million YouTube video IDs and particularly
interests us for its subset of videos labeled as “music videos,”
as we believe these videos demonstrate a stronger correlation
between music and visual content. Compared to purely instru-
mental videos, such as concert recordings, music videos often
provide more complex expressions of content, presumably
aligning more with the current trends in video consumption.
Thus, we accessed the YouTube-8M Dataset and filtered for
videos labeled as “music videos.” We then retrieved the full
YouTube video IDs for these selected videos and downloaded
the corresponding videos along with their audio tracks.

We used 1200 videos labeled as “music video” and seg-
mented them into clips of length 15 s. This segmentation
method aids the training process, as handling longer videos
would decelerate both the feature extraction and training
phases. Additionally, the 15 s length of each segment aligns
well with the prevalent duration of short videos today [26].
After segmenting the videos, we divided them into audio and
visual components. This process ultimately produced 16,217
pairs of video-audio suitable for training. These 16,217 pairs
of 15 s audio-video clips serve as our dataset, which has been
divided into training, validation, and test sets in a ratio of
0.8, 0.1, and 0.1, respectively. We ensure that these segments
in each set are sourced from different songs. Our dataset is
publicly available in our online repository.1

1https://github.com/shimiao60s/TIVM

B. Metrics

We utilize Top k Recall as an evaluation metric. For each
sample, a hit is recorded if the positive sample (the original
match) is within the top k recommendations. We compute and
compare recall at Top 1 (Accuracy), Top 5, Top 10, Top 25,
and Top 50 levels. Additionally, we have reported a “Random
Result” as an anchor, which represents the probability of
randomly selecting the correct match from k samples in the
test set without using any model. This serves to clarify the
effectiveness of the evaluated model.

C. Configurations

To investigate the performance of our models in video
music recommendation and understand the impact of different
temporal information processing methods, we designed seven
distinct experimental setups. Most configurations represent a
different way of handling temporal information. By comparing
the results of these experiments, we aim to identify the optimal
method and analyze the underlying reasons.

1) VM-M: VM-NET Using Feature Means: We reimple-
mented VM-NET [6] as our baseline model and trained it with
our data. In the most basic setup, the input features for audio
and video are averaged over time, resulting in input dimensions
of 128 and 1000 for each audio and video snippet, respectively.

2) VM-R: VM-NET with Raw Sequence: In this VM-R
setup, the entire raw feature sequences of length 15 s are the
input into the baseline model. We apply max pooling after
the embedding process, to facilitate the computation of cosine
distances and cosine similarities.

3) VM-MS: VM-NET with Aggregated Features: In this
configuration, features are aggregated over time to calculate
both mean values and standard deviations. Thus, the audio
features have dimensions of 256 and the video features have
the dimension of 2000. The inclusion of the standard deviation
is intended to incorporate more temporal information into the
input features.

4) IVM-M: VM-NET Using InfoNCE with Means: This
configuration retains the dual-branch embedding architecture
of VM-NET but utilizes the InfoNCE Loss for training. The
input features for both audios and videos are averaged over
time.

5) IVM-MS: VM-NET Using InfoNCE with Aggregated Fea-
tures: This model maintains the dual-branch embedding archi-
tecture of VM-NET and employs InfoNCE Loss for training.
The input features for audios and videos are aggregated over
time to both mean values and standard deviations. The addition
of standard deviation is to enrich the input features with more
temporal information.

6) LIVM: Using LSTM Encoder and InfoNCE: This setup
preserves the dual-branch embedding structure of VM-NET,
uses InfoNCE Loss for training, and incorporates an LSTM
Encoder to better manage temporal dynamics. The inputs are
raw feature sequences.

7) TIVM: Using Transformer Encoder and InfoNCE: The
TIVM model maintains the dual-branch embedding structure



TABLE I
EVALUATION RESULTS WITH DIFFERENT CONFIGURATIONS (IN %)

Metric Random Result VM-M VM-R VM-MS IVM-M IVM-MS LIVM TIVM
Accuracy (Top 1) 0.06 0.37 0.20 0.49 0.55 0.76 0.56 2.61

Top 5 Recall 0.31 1.85 1.17 1.29 2.77 3.08 2.60 12.80
Top 10 Recall 0.61 3.45 2.74 3.26 4.56 5.79 4.44 24.01
Top 25 Recall 1.23 7.53 6.14 7.02 9.00 11.58 9.26 55.92
Top 50 Recall 3.07 12.52 12.53 13.61 14.73 18.63 15.12 98.92

of VM-NET. It trains using InfoNCE Loss and includes trans-
former Encoders to enhance handling of temporal dynamics.
The inputs are raw feature sequences.

V. RESULTS AND DISCUSSION

The evaluation results are summarized in Table I, showcas-
ing the performance of different model configurations across
various evaluation metrics.

A. VM-R vs. Others

The baseline using raw sequence as input does not have
an advantage compared to VM-M and VM-MS, which use
mean values or a combination of mean values and standard
deviation as features. Without proper encoding or processing
of temporal data, the model’s performance is unlikely to
improve. Moreover, compared to LIVM and TIVM models,
which also use raw sequence as input, the baseline shows no
advantage. This indicates that the VM-NET model itself is not
suitable for handling sequential information. In contrast, our
TIVM model demonstrates strong performance.

B. IVM-M vs. VM-M and IVM-MS vs. VM-MS

These two comparisons demonstrate the superiority of In-
foNCE. With the same input and VM-NET model, using
InfoNCE to train the model yields better results. This improve-
ment indicates that InfoNCE enhances the model’s ability to
distinguish between matching and non-matching audio-video
pairs. When using Triplet Loss, the number of triplets is
limited and requires configuration—VM-NET achieves this by
selecting the top Q most violated matches [6]. In contrast,
InfoNCE calculates the relative distances of all pairs, bringing
samples closer to their positive counterparts and further from
negative ones.

C. VM-M vs. VM-MS and IVM-M vs. IVM-MS vs. LIVM

The standard deviation calculated from feature sequence
reflects —to some extent— the changes in features over time.
The introducing of the standard deviation into the model input
improved the recall rate, highlighting the importance of cap-
turing temporal variations for understanding dynamic audio-
visual interactions. However, the LIVM model with an LSTM
encoder performed just slightly better overall than the baseline
model and the IVM-M model, and did not achieve the same
level of improvement as other models with standard deviation
input. This suggests that while LSTM can handle temporal
dynamics to some extent, it may require a larger dataset or
possibly longer sequences to fully realize its capabilities.

D. LIVM vs. TIVM

To increase comparability, we aimed to keep the total
parameter count for both LIVM and TIVM within a spe-
cific range, such as between 10 million to 20 million. The
comparison of Transformer and LSTM enhancements with
baseline methods clearly shows that both techniques surpass
the baseline across all recall levels. However, significant
performance differences exist between them, with the Trans-
former consistently achieving higher recall rates. This disparity
emphasizes the Transformer’s superiority in capturing long-
range temporal dependencies, essential for tasks involving
audio-visual matching. The Transformer’s architecture, capa-
ble of processing all elements of the sequence in parallel
and its self-attention mechanism, effectively captures complex
temporal relationships throughout the sequence. In contrast,
while LSTM models are adept at modeling sequential data,
their sequential processing nature may limit their ability to
handle long-range dependencies. Therefore, the Transformer
architecture is better suited for tasks that require a compre-
hensive understanding and utilization of extensive temporal
contexts.

VI. CONCLUSION AND FUTURE WORK

In this study, we have introduced a novel approach to
automate the process of recommending appropriate audio for
video content, enhancing the effectiveness of audio-video
matching. The use of the InfoNCE loss has demonstrated
its superiority over traditional loss functions like Triplet loss,
enabling our model to better distinguish between matching and
non-matching audio-video pairs. Moreover, the implementa-
tion of advanced temporal encoding techniques improved the
model’s accuracy in predictions. Among these, the integration
of transformer encoders in our TIVM model has been par-
ticularly impactful, effectively handling long-range temporal
dependencies essential for the task at hand. Our approach
not only surpasses traditional methods but also sets a new
benchmark in the field of video music recommendation.

In our future efforts, we plan to introduce more positive
pairs, as in actual short-video production, a single song
may match multiple videos, or one video may correspond
to several songs. This will necessitate adjustments to the
dataset or additional manual annotations. We also plan to
collect subjective evaluation metrics from users, such as using
Pairwise Comparison, to gather user evaluations and rankings
of different pairs. This will serve as a criterion to assess the
model and incorporate more potentially positive pairs, thereby



enhancing our understanding of the model’s recommendation
results and potentially optimizing the model.
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