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Abstract—Processing multiple signal sources presents a chal-
lenge but also an opportunity in music information processing,
especially when the sources provide complementary information.
The attention mechanism paves the way toward addressing this
challenge. In this paper, a novel transformer for beat and down-
beat detection is proposed, named Informed Beat Transformer. It
is theorised to both improve upon previous beat and downbeat
detection models and take advantage of auxiliary information.
Two experiments are run to test these two hypotheses. In the
first experiment, it is directly compared to the Beat Transformer
and found to have an average improvement of 0.005 in the F1
score across 4 datasets. The second experiment compares the
Beat Transformer and madmom’s beat tracker to the Informed
Beat Transformer in a situation where a beat coherent signal
stream is available, in this case a drum track. It was found to
have a significant improvement to the Beat Transformer with an
increase in F1 score of 0.702 and an increase of 0.018 to the
madmom beat tracker. These results show the efficacy of the
Informed Beat Transformer in both experimental settings.

I. INTRODUCTION

The detection of rhythmic components in music is crucial in
several applications, including networked music performance
and immersive experiences [1] [2], where parts of the perfor-
mance may be controlled by or need to track the beat of the
music. This has become more important with the proliferation
of Virtual Reality and virtual concerts [3]. Another example
are smart instruments [4], [5], which react to musical content
and online delivery and retrieval of audio and music where
features such as search, navigation or distributed audio editing
may depend on beat related features.

In these contexts, and more generally within the application
of Music Information Retrieval in Internet of Sounds [6]
applications, there is an emerging need to process multiple
information sources or multiple signals concurrently that are
available in the environment. This could potentially reinforce
decisions or inform algorithmic decision making where such
signals are complementary.

So far, most beat tracking algorithms focus on processing a
single audio signal. Some early signal processing techniques
attempted to add contextual information [7], but this generally
relied on handcrafted features, extracted from a single audio
source. Modern neural networks have investigated de-mixing
audio [8] and combined tempo-beat learning [9], but there has
been no investigation into utilising external signals.

In this paper, a new beat transformer is proposed to address
this gap. By informing the models’ processing via available
external sources, we hypothesise that the accuracy of the beat
detection model can be improved. Two separate regimes are
tested, using different external sources. The first one looks at
using the output from a previous beat detection model. The
second looks at using an accompanying drum track. Both of
these signals are predicted to be coherent with the beats of
the input audio and represent an external source which could
be substituted for a signal obtained during a networked music
event.

II. BACKGROUND

Beat and downbeat tracking has seen improvements over
the last 10 years due to the use of neural networks. Recurrent
neural networks (RNNs) [10], convolutional neural networks
(CNNs) [11] and deep Bayesian networks (DBNs) [12] all
produced increased accuracy when compared to standard sig-
nal processing techniques. More recently, the use of temporal
convolutional networks (TCNs) [13] and transformers [8],
[14], [15], [16] have produced the highest quality outputs. The
joint training of tempo and beat estimation has also improved
accuracy [8], [9].

Within the transformer architecture, changes to the attention
mechanism have been a focal point of research in the last
two years. The use of dilated attention (DA), in the Beat
Transformer [8] and dilated neighbourhood attention (DNA),
in the All-in-One metrical analysis transformer [15] were both
designed to reduce computational complexity of the attention
mechanism, whilst also improving the accuracy of the results.
Alongside this, the use of de-mixing audio, using modern
source separation models, has been attempted to leverage the
information contained within each instrument in a mix.

However, we hypothesise that modern transformer models
could be improved by utilising auxiliary information to infer
the location of beats and downbeats. Two major use-cases can
be distinguished.

The output of a previous model on the same audio in-
put can be utilised to inform the attention mechanism in
transformers such that the increase in accuracy gained over
the last few years can be harnessed. This would allow for
continual improvement of results, via iteration, without relying



on increasing model size and complexity. This also allows for
a reduction in computational costs as previous models have
already produced a beat informed embedding. The reduction
in computational complexity is a prerequisite for real-time
applications, however, our research focuses on demonstrating
the concept and was tested in offline contexts. Therefore real-
time applications are currently not supported. The next use-
case provides an example application for this system.

The attention mechanism can also be informed by other
sources, for instance percussive tracks, which often have
a strong correlation with the beat, or other beat-correlated
sources. A typical regime would be a multi-track setup, poten-
tially live, where the percussive track could aid in determining
the beat of more challenging tracks, such as strings.

Both regimes are considered in this work. To achieve
them, Informed Attention (IA) is proposed. A similar method
has been proposed in machine translation tasks [17], where
critical word dependencies are masked in the attention matrix.
Another formulation, Mixed-Informed Attention, has also been
proposed for few-shot medical image segmentation [18]. This
technique utilised query and support features (masked images)
to remove background information, thus allowing the network
to focus on the relevant information.

The method proposed in this paper follows a similar logic.
However, the implementation differs. By obtaining an auxiliary
signal, whether via previous models or by other techniques,
the importance of areas in the input signal can be determined.
Areas of little importance are then masked to allow for the
network to focus on the important information. To test this
architecture, we compare with the Beat Transformer (BT) [8].
The latter was selected because of its state-of-the-art beat and
downbeat detection results across a variety of datasets, and its
use of multi-track data in the input data.

In addition to being a reference for comparison, the output
of the BT is used as the auxiliary signal in Experiment
I. The fact that the BT has varying accuracy across the
chosen datasets allows for the validity of the method to be
compared for a wide range of informed input accuracy. As
the informed architecture relies on input from a previous
model, the accuracy of the previous model could be a strong
determining factor for the success of IA. Having a variety of
accuracies across the dataset allows for this to be tested.

Two main components of the BT architecture will be briefly
discussed, which contribute to its strong beat detection perfor-
mance. Firstly, the use of dilated attention. This follows a simi-
lar structure to a TCN, but applied to an attention mechanism.
This allows for the model to attend to longer input streams
without quadratically increasing the computational complexity.
Each level of the dilation architecture produces features for
different metrical levels of the input audio. Secondly, the use
of instrument-wise attention. This follows the same structure
as self attention (which is discussed further in section III-A1),
but across the instrument domain, rather than the time domain.
As shown in [8], these methods increase the accuracy of the
transformer and are therefore both utilised alongside IA in the
model presented in this research.

To compare the BT and the Informed Beat Transformer
(IBT) in the two regimes outlined above, two experiments were
conducted. The first is a direct comparison between the BT
and IBT. The second investigates the potential of using specific
instrument tracks that are known to have strong beat coherence
to explicitly inform the attention mechanism. The aim of these
experiments is two-fold. Firstly, to show the potential of IA
to improve upon previous beat detection models and secondly,
to show the practical uses of IA in a situation where a beat
coherent data stream is available, but not part of the target
audio.

III. METHOD

A. Informed Attention

1) Self-Attention: The core of attention in transformers is
self-attention, which was introduced in [19]. Self-attention is
calculated via Equation 1.

Attn(Q,K, V ) = softmax

(
QKT

√
dh

)
V = softmax (E)V,

(1)
with Q, K and V being the query, key and value matrices

which are formed via a linear projection of the input X and dh
being the head dimensionality. X has a sequence length T and
a feature dimension d. Q,K and V all have the dimensionality
of (N , T , d/N ), with N being the number of heads for multi-
head attention and dh = d/N .

If we focus on the attention weight matrix E, we notice that
it has dimensions T × T and its elements Ei,j are calculated
as

Ei,j =
Qi,:K

T
j,:√

dh
, (2)

with i and j represent the row indices for Q and K respec-
tively, ranging from 1 to T .

2) Informed Attention: IA follows the same attention mech-
anism as in Equation 2, but utilises auxiliary information to
indicate locations which are more relevant to the problem. This
modification is shown in Equation 3.

Ei,j =
Qi,: (K

T
j,: + Cj)√
dh

. (3)

In this case, C is a vector which defines the weight given
to each of the T temporal locations. By setting C to −∞ in
locations which are not relevant to the problem, C acts as a
mask and only T ′ elements of K contribute to the attention
score. The superfluous positions can be removed from the
attention matrix and V to achieve a computational speedup.

The mask is obtained by finding the areas of interest from an
auxiliary signal. The areas outside of these regions are then
set to −∞ in the mask, whereas regions of interest can be
weighted to express varying degrees of interest. An example
of the resulting attention matrix can be seen in Figure 1.



Fig. 1. An example attention matrix for informed attention. a) shows the
areas to attend to in green and the areas to mask in red of a sequence c).
b) shows the masked attention matrix. The colours match with the reduced
matrix shown in d). The reduced matrix removes the −∞ found in the mask
for computational efficiency.

B. Obtaining the Attention Locations

1) Procedure I: To utilise the output from a previous model,
we found that the best way to create an auxiliary signal starts
with processing the raw output from the final layer of the
model. For the BT, this is two sequences of length T , one for
the beats and one for the downbeats. After applying sigmoid to
this output, the locations to attend to will be close or equal to
1. The locations to ignore will be close or equal to 0. Further
processing of the signal is explained below. An example output
can be seen at the top of Figure 2.

Once the sigmoid function is applied, its output is scaled
such that it ranges from m to 0 instead of from 0 to 1. m is
negative and its value determines the sensitivity of the attention
mechanism to the auxiliary signal. Two adaptive thresholds are
then used. Any values above the first are set to 0. Any values
below the second are set to m. The results of this can be

Fig. 2. Output of the BT after being passed through the sigmoid function
(Top), and the same output after being passed through the processing outlined
in section III-B1 (bottom). For visualisation, the values that would be −∞
after processing have been left at m = −4 on the Filtered Output graph.

seen at the bottom of Figure 2. Finally all values at m are
set to −∞ and the results are saved. This is performed for
every song in the training, validation and test datasets. The
use of the adaptive thresholding has two major advantages.
Firstly, it allows the output to be correctly scaled regardless
of the input range. Therefore, the number of locations to
attend to remains relatively linear when compared to the input
sequence length regardless of the accuracy of the original
model. Secondly, it keeps the information which lies in the
middle of the output range. This provides extra information to
the attention mechanism by suggesting areas that could be less
important but not removing them entirely, allowing the model
to determine there relevance. Finally, the width of the peaks
in the signal are increased to account for temporal errors from
the original model. In the ideal case, these peaks would cover
the important regions of the audio allowing for the irrelevant
locations to be masked. These values are then used as the mask
in Equation 3.

2) Procedure II: In Experiment II the informed input is
produced from the drum track of a multi-track dataset. This has
to be processed so it follows the structure outlined in section
III-B1. To achieve this, the drum audio is processed via the
madmom beat tracker [20]. The resulting beats and downbeats
are then set as peaks in a vector length T . This is then filtered
using a maximum filter to produce wider peaks to allow for
errors in the madmom beat detection. The result can be seen
in Figure 3.

As in Experiment I, the resulting vector is scaled between
0 and n. Values at n are then set to −∞. These are then used



Fig. 3. An example of the filtered peaks used for the informed input in
Experiment II. The orange and blue represent the downbeat and beat informed
input respectively.

for the informed input when testing the model.

C. Reducing Computational Complexity

One issue with using a masked attention mechanism, as
described in Section III-A2, is the computational complex-
ity. Self-attention does not scale well with longer sequence
lengths. This is one of the main motivations for the BT [8]
and the All-in-One metrical analysis transformer [15]. This is

due to the size of the attention matrix created via
QKT

√
dh

, as the

resulting matrix has a dimensionality of T×T . In comparison,
the dilation layers in the BT have a dimensionality of T ×L,
with L being a pre-determined attention length (5 in this case).
In IA, entire rows of the attention matrix are being set to −∞.
This means that the attention mechanism cannot attend to these
locations. Therefore those rows can be entirely removed from
the attention matrix. In practice, this involves removing the
locations from K, allowing for a precise implementation of
equation 3. An example of this can be seen in Figure 1. The
reduced size of the attention matrix is T × T ′. It should be
noted that T ′ is generally larger than L. For the data used in
this research it was usually 10% of T . This reduction is crucial
for reducing computational complexity and thus the memory
restrictions and speed of training.

D. Model Architecture

An overview of the model architecture can be seen in
Figure 4. This architecture can be split into three distinct
sections. The encoder, which is taken from the BT, the self-
attention, dilation and time attention blocks and the informed
attention blocks. The self, dilation and instrument attention
blocks are designed to capture information which is not found
in the IA blocks. The instrument attention block, pioneered
in [8] performs self-attention in the instrument dimension,
rather than the time dimension as is standard with music
transformers. This is designed to more explicitly utilise the

information from each different instrument in the multi-track
dataset. Three dilation blocks with an attention length of 5
and dilation levels of 1, 3 and 5 were also utilised. These are
designed to capture dependencies at different metrical levels.
The standard self-attention block is also used to allow the
network to gain an understanding of the entire input sequence
without any masking or dilation. The output of all attention
layers are combined and then pooled to jointly train beat,
downbeat and tempo. Finally the output of the final linear
layer is passed through madmoms DBN to calculate the final
beats and downbeats.

IV. EXPERIMENTS

A. Experiment I

The first experiment was designed to directly compare the
BT and the IBT. The results would indicate whether IA can
improve upon previous models by utilising their outputs. To
this end, the experiment was set up in the same way as in
[8]. The output of the BT was used as the auxiliary signal
source. Due to GPU memory constraints, the Harmonix [21]
and Carnatic [22] datasets were removed from the training
regime. Therefore, the data consisted of the Hainsworth [23],
Ballroom [24], [25], SMC [26], and GTZAN [27] datasets. The
input to the models consisted of a multi-track mel spectrogram
with 128 mel bins. They were created with a frame size of
2048, a hop size of 1024 and a sample rate of 44100 Hz. The
GTZAN dataset was left out for testing only. For processing
the auxiliary signal, the value of m in Section III-B1 was set
to -4. This value was chosen as it represents a middle ground
between providing information to the attention mechanism,
without completely dominating the attention matrix. An 8-
fold cross-validation was used for both the BT and IBT. The
split for this cross-validation was the same in [8]. In order
to get the informed input for the IBT, the BT was trained
first. The output of this was then processed as described in
Section III-B. The processed outputs were then fed into the
Informed Transformer during training, validation and testing.
Both models were trained for 30 epochs using RAdam as the
optimizer and a learning rate of 0.001. Dropout was set to 0.1.
The IBT had a size of 9.67M trainable parameters. The BT
has a size of 9.29M.

B. Experiment II

Experiment II was designed to test the hypothesized advan-
tages of IA when used in a setting where a beat correlated
signal different from the audio signal to process is available.
An example of this can be seen in Figure 5.

The pre-trained BT and IBT (from the previous experiment)
were tested and compared on a small subsection from the
tinyAAM dataset [28]. Specifically, songs were chosen which
had drums running through the whole track. This left 5 songs
for testing. The audio was synthesized from the tinyAAM
MIDI data. In this experiment, a processed version of the drum
track is used as informed input. The same value of m was
chosen as in Experiment I. The drums are an example of an
auxiliary signal stream which can provide information about



Fig. 4. Overview of the model architecture used in the experiments. The encoder is a combination of convolutional and pooling layers taken from the Beat
transformer [8].

Fig. 5. An example of performing beat and downbeat detection on an audio
signal, with a secondary, beat correlated signal present. In this case the violin
is the input audio and the drum signal provides the informed input.

TABLE I
COMPARISON OF BEAT AND DOWNBEAT F1-SCORES ON FOUR DATASETS
FOR BEAT TRANSFORMER AND INFORMED BEAT TRANSFORMER. THE

95% CONFIDENCE INTERVAL IS ALSO SHOWN.

Dataset Model F1 Beat F1 Downbeat

Ballroom BT 0.914 ± 0.0105 0.866 ± 0.0169
IBT 0.937 ± 0.00667 0.872 ± 0.0170

Hainsworth BT 0.875 ± 0.0592 0.699 ± 0.0779
IBT 0.885 ± 0.0530 0.679 ± 0.0655

SMC BT 0.544 ± 0.0263 -
IBT 0.554 ± 0.0270 -

GTZAN BT 0.981 ± 0.00172 0.966 ± 0.00370
IBT 0.984 ± 0.000698 0.968 ± 0.00177

the beats and downbeats. The rest of the instruments range
from piano and guitar, to cello and flute. The Beat Transformer
was tested in three different regimes. The first did not include
the drum track in the input audio. The second included the
drum track and the final was tested only on the drum track. The
Informed Beat Transformer was tested using the drum track
as the informed input, once with the drums in the input audio,
and once without. As both the Beat Transformer and Informed
Transformer are designed to work with tracks without tempo
changes, the songs were split, in time, depending on the tempo.
For songs with few, or no, tempo changes, further splits were
needed to reduce the sequence length to accommodate the
GPU constraints.

V. RESULTS AND ANALYSIS

A. Experiment I

The results for Experiment I can be seen in Table I.

The BT results in Table I are lower than the reported results
in [8], but the original code was used to obtain these results.
This is due to the reduced training dataset as discussed in
section IV-A. The results show that IBT improves the results
of the BT across the large majority of the datasets. Specifically,
the IBT outperforms the Beat Transformer in beat detection
across the entirety of the dataset, with large improvements seen
in the Ballroom beat detection. The smaller increases seen for
the GTZAN dataset is to be expected as the F1 scores for these
results are very high already. The small increase to the SMC
results is less significant due to the low F1 scores for both
models. This could be due to the lack of clear peaks in the
BT output. This would then produce a less consistent informed
input for the IBT. The main outlier in the results is the decrease
in the downbeat F1 score for the Hainsworth dataset. The
Hainsworth dataset had the most varied scores across the 8
folds for both the BT and IBT. This implies that the output
for this dataset is varied and this would affect the informed
input and therefore the IBT. The rest of the results show
small improvements for both beat and downbeat detection.
This consistent increase in F1 scores show the validity of IBT
for improving upon previous beat detection models. The 95%
confidence measures, found using the standard deviation of
the scores across the 8 folds, suggests the IBT produced less
variance for the majority of the datasets. This suggests that
the IBT is more consistent than the BT.

Another point of comparison is the model size and training
times. The IBT has 9.67M parameters compared to the 9.29M
of the BT. However, its training time was significantly reduced.
This was due to both the quicker convergence and the attention
matrix reduction outlined in Section III-C. The matrix reduc-
tion reduced the attention matrix size by as much as 90% from
the majority of the data. Whilst the IBT and BT where both
trained for 30 epochs, the IBT produced strong results very
early in the process. Often getting close to convergence after
only 5-10 epochs. The faster convergence time is something
that transformer architectures often struggle with [19] and
these results demonstrate the advantages of IA. It also had
a far lower epoch time, with the BT taking approximately 35
minutes per epoch compared to the 14 minutes of the IBT.
It should be noted that the IBT does require an input from a
previous model/signal stream. In this use-case this adds to the
training time cost, as the BT needs to be trained and the results
processed. However, in a regime where the auxiliary input
comes from a separate data-stream, such as in Experiment II,



TABLE II
RESULTS OF EXPERIMENT II. ”NO DRUMS” MEANS THAT DRUMS WERE
NOT PRESENT IN THE INPUT AUDIO. ”DRUMS ONLY” MEANS ONLY THE

DRUMS WERE USED IN THE INPUT AUDIO.

Model F1 Beat

BT No Drums 0.239
BT Drums 0.256

BT Drums Only 0.3041
IBT No Drums 0.958

IBT Drums 0.895

this would not be a sizeable factor. It should also be noted
that, in iterative refinement, there is always the added cost of
previous iterations, but if we can achieve a better result with
the refinement architecture being ”cheaper” to compute than
the previous step (original algorithm) that’s still an advantage.

B. Experiment II

In Table II it can be seen that the Informed Transformer
outperforms the Beat Transformer to a significant degree, both
when trained with and without the drums in the input mix.
The large difference in results implies two main conclusions.
Firstly, that the BT does not perform well on data that is out-
of-domain. As the BT was trained using the data in Experiment
I, but then tested on the tinyAAM dataset for Experiment II,
the poor F1 score for the beat tracking suggests this. Secondly,
when given a strong informed input, the IBT performs well
on out-of-domain data. This is a positive result and shows the
validity of the IBT in this setting. It should be noted that,
while these results are significant, the results for the madmom
beat tracker, which pre-processed the drums for the informed
input, should be taken into account. When ran on the input
mix, without the drums, madmoms beat tracker produced a
beat F1 score of 0.940. Whilst the IBT still outperforms this,
the difference is small. This suggests a major limitation of
the BT, alongside the efficacy of IBT. Another interesting
point to note is that the informed input signals for testing
were created differently from those at training time. Whilst
the post-processing was similar, the BT was used for training
in this experiment (since the model trained in Experiment I
was reused) but madmom’s beat tracker for testing. However,
the IBT still managed to perform at high levels without further
training, regardless of these differences.

VI. CONCLUSION

The results from Experiment I show improvements across
almost every dataset. This alone is a strong result, as in
general, increases for beat detection models have not been
so consistent in recent years. When comparing the results of
the Hung Transformer [14], the Bock transformer [9] and the
BT, as done in [8], the model that produces the best result
varies across each dataset. This difference makes the consistent
improvement found in this research worth noting. To look
further into this, the IBT could be trained using the outputs
of different beat detection models. If consistent improvement
was found to all then it would suggest that IA could be used to

continually increase accuracy. This could be done by repeated
training and processing of the output from the IBT, creating a
feedback loop between the IBT output and its informed input.
This is something that needs further investigation.

The significantly reduced epoch time of the IBT suggests,
with further refinement, a potential application to real-time
processing, something that is difficult to achieve with modern
transformer architectures due to their large size. This makes
the IBT more suited to the potential live performance appli-
cations tested in Experiment II.

The outcome of Experiment II suggests that the use of
IA could greatly benefit situations where external information
regarding beats and downbeats is available. This could include
live performance, or online tracking where extra information
may not be in the form of an audio stream. Due to the
flexibility of the IBT in regards to the informed input, it
is suggested that the applications could go beyond the ones
suggested in this paper. Furthermore, the application of IBT
is not limited to beat tracking. By changing the task and
the informed input, it is suggested that IBT could be easily
adapted to other MIR tasks such as chord recognition. In
this case, utilising pitch information from a harmonically
rich instrument, such as a piano, chord help inform chord
recognition models, when trained on more percussive sounds.
This is an area of research which has great potential.

There are a number of other different avenues for further
research. Experiment II indicates that using the IA architec-
ture with multi-track data more explicitly, having multiple
informed inputs for each instrument, for example, could prove
fruitful. As discussed above, it is also worth investigating
the potential of continually improving results by creating a
feedback loop between the IBT output and the informed input
across multiple training sessions.

Overall, there are advantages and disadvantages to using IA
over other transformer architectures for beat detection. The
reduced training and processing time of IA is noticeable and
provides unique practical opportunities. The out-of-domain
accuracy of the IBT also suggests this. However, the IBT is
reliant on the informed input. If this is not obtainable, or un-
reliable, the accuracy suffers. Therefore, a major factor when
training and applying this model is the pre-processing and
feature crafting of these inputs. This can be time consuming
and depending on the data stream used, be difficult to carry
out. The IA architecture has also been shown to have practical
applications in networked, or live music contexts. For example,
using an auxiliary data stream to determine the beats of an
audio signal to control the lights of a concert. Whilst the real-
time validity of this needs to be explored, it is a step in the
right direction for informed MIR.
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