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Abstract—With the demand for music continuing to grow as
people seek variety and personal resonance, many works focus
on music generation. In this study, we propose GENPIA, a
genre-conditioned piano music generation system. The system
encompasses Anime, R&B, Jazz, and Classical music genres. To
build our system, we collect and label audio data of various
genres for the specific objective of our research. REMI audio
representation with genre information extension is applied during
data pre-processing to present the audio data with a better data
structure. Transformer-XL is implemented as the model to learn
knowledge about the extended audio representation and generate
the desired output audio. An external dataset, called Ailabs.tw
1K7, is utilized for pre-training purposes. The results obtained
from a listening questionnaire show that GENPIA can generate
better piano pieces conditioned on different genres compared to
the prior state-of-the-art work.

Index Terms—GENPIA, Piano music generation, Genre-
condition, Transfromer-XL.

I. INTRODUCTION

Generative Al has attracted increasing attention alongside
advancements in deep learning technologies. For instance,
innovations like ChatGPT proposed by OpenAl [33] and
Midjourney’ [31] text-to-image generation capabilities exem-
plify the progress in text-to-text and text-to-image generation,
respectively. Despite these achievements [2, 39], generating
music from textual input remains a challenging endeavor with
ongoing efforts striving for improvement, especially concern-
ing diverse music genres.

To address this challenge, leveraging deep learning for
music generation has emerged as a promising approach,
drawing significant interest due to the intrinsic connection
between music and deep learning. Initially, methods based
on recurrent neural networks (RNNs) have been employed
for [37] for music generation tasks. However, the intro-
duction of Transformer [43] architectures has revolutionized
the field, with many researchers adopting Transformer-based
approaches. Nevertheless, variations persist among these meth-
ods, including differences in data pre-processing, data types,
and the genres of music generated.

Music composition demands extensive musical knowledge,
posing significant challenges even for human composers. In

the genre-conditioned piano music generation research, the
three main challenges are:

1) The structure of music: Improving musical structure can
increase the listener’s ability to understand and appreci-
ate the music. When writing articles, we utilize different
paragraphs to separate various information we intend to
describe, which increases the reader’s comprehension.
To improve audio generation capabilities, enhancing the
structure of the music is necessary.

2) Genre information addition: To generate piano music
that is conditioned on genre, it is crucial and essential
to incorporate the genre label information into the audio
data during the pre-processing stage. In addition, the
method of genre information addition should support
model inference.

3) Conditioned by genre: In Section II-B, we emphasize
that EMOPIA [22] demonstrates the capacity to capture
emotional cues in music, yielding exceptional results
across various assessments. However, it remains un-
certain whether similar success can be attained when
shifting focus from emotions to genres.

Taking inspiration from EMOPIA [22], which demonstrates
the effectiveness of Transformer-based models in emotion-
conditioned piano music generation and addresses key research
agendas in the scientific field of the Internet of Sounds [42]
our study shifts its focus to genre-conditioned piano music
generation. Specifically, we explore genres such as Anime,
R & B, Jazz, and Classical. In summary, the contributions of
this research can be summarized as follows:

o We developed a system called GENPIA that is able to
automatically generate piano music based on a specified
target music genre.

o We gathered and meticulously labeled a music dataset,
conducting thorough data cleansing to meet the require-
ments of REMI [21] audio representation. In addition, we
implemented genre information addition to enhance the
data structure for representing audio data, converting it
into REMI audio representation with extension.

e To learn audio patterns across various music genres,



we adopt Transformer-XL [9], which has a high input
dependency length, and we utilize the proposed method
of genre information addition to support model inference.

o In addition to utilizing our dataset for model training, we
incorporate an external dataset, Ailabs.tw 1K7 [19], for
pre-training purposes.

o We designed a listening questionnaire incorporating sub-
jective metrics to conduct a comparative survey between
GENPIA and EMOPIA [22], with and without pre-
training, across various music genres. The survey results
demonstrate GENPIA’s superior ability to generate piano
music across different genres.

II. RELATED WORK

A. Non-Transformer-based Music Generation

Most of the works that are not Transformer-based on
music generation are based on Long Short-Term Memory
(LSTM) [18]. In [23], a model based on LSTM and Rein-
forcement Learning (RL) [25], is trained on a huge library
of songs. This method not only generates more attractive
melodies but also significantly reduces the occurrence of errors
in Recurrent Neural Networks (RNNs) [37]. Wu et al. [46]
merge three LSTM subnetworks to present a hierarchical RNN
that performs better than a single one. Roberts et al. [36]
construct a Variational Autoencoder (VAE) [28] with LSTM
model and make use of a hierarchical decoder to deal with
longer music generations. Apart from LSTM models, Yang et
al. [49] apply Convolutional Neural Networks (CNNs) [48]
and transform them into a Generative Adversarial Network
(GAN) [17] for composing music with multiple MIDI tracks.

B. Transformer-based Music Generation

The earlier Transformer-based methods [8, 20, 24] use
MIDI-like audio representation [32] , and their models are
trained on the Transformer introduced in [43]. Huang et
al. [20] apply the relative attention mechanism to compose
minute-long music. Choi ef al. [8] combine raw data en-
codings periodically to create an overall representation. Jiang
et al. [24] incorporate the works of learning understandable
latent representations and relationships over time. The works
in [12, 35] improve the MIDI-like audio representation with
extensions. Ens et al. [12] convert multiple soundtracks
into a single sequence, each with a time-ordered series of
musical events, and finally name their model MMM. After
the introduction of Transformer-XL [9], Donahue et al. [11]
use MIDI-like audio representation with extensions. This
combination improves multi-instrumental music generation.
Then, Chen and Wu [6, 45] apply REMI with extensions
and generate music using Transformer-XL. Chen et al. [6]
propose fingerstyle guitar tabs while Wu et al. [45] focus on
lead sheets of Jazz music. Last but not least, Hung et al. [22]
make use of Compound Word [19] on Linear Transformer [26]
to perform emotion-conditioned music generation. The main
advantage of Linear Transformer is its low time and memory
complexity during training and inference.

C. Music Datasets

Music datasets can be categorized into labeled and unla-
beled datasets:

1) Unlabeled music datasets: Defferrard et al. [10]
provide Free Music Archive (FMA) dataset, which in-
cludes audio and metadata (e.g., duration, license, and
producer). Bittner et al. [5] introduce MedleyDB a
dataset comprising audio, annotations (e.g., source id,
pitch, and melody), and metadata (e.g., artist, composer,
and producer). Kong et al. [29] created GiantMIDI, a
large MIDI dataset of classical piano music. Wang et al.
[44] present POP909, which contains 909 popular songs
with piano accompaniment, lead instrument melody, and
vocal melody in MIDI format. Hsiao et al. [19] also
collected a dataset with pop piano performance, called
Ailabs.tw 1K7.

2) Labeled music datasets: The most commonly used
label type is emotion-related. For instance, the datasets
in [7, 34] use adjectives (e.g., happy, inspiring, dark,
and tense) as labels. The works in [13, 14] label
the music with valence and arousal values, especially
in [22], which utilizes Russell’s 4Q [38] (i.e., high/low
of valence and high/low of arousal) as its label type.

III. PRELIMINARY

A. Transformer-XL

Transformer-XL [9] model uses the architecture based on
Transformer [43] shown in Figure 4. In the following subsec-
tions, we delve into the specific architectures of the encoder
and decoder employed in Transformer-XL. Furthermore, we
explain the improvements of Transformer-XL which distin-
guish it from the foundational Transformer model.

1) Transformer Encoder: The encoder (in Figure 1) starts
with multi-head attention [43], then adds the original inputs
using a residual connection and normalizes them. Afterward,
it passes through Layer Normalization [4]. Next, the outputs
go through a fully connected network with another residual
connection. Finally, Layer Normalization is applied again.

Layer
Normalization

Normalization

Residual
connection|

Fig. 1: The encoder processes in Transformer-XL.



2) Transformer Decoder: Contrary to the encoder, the
decoder (Figure 2) starts with an initial token. It then uses
previous outputs as inputs, determining its outputs through a
probability distribution. The key difference between encoder
and decoder lies in masked multi-head attention, essential
because the decoder accesses previous outputs incrementally.
Hence, masked multi-head attention is employed to overcome
this limitation. Figure 3 illustrates this distinction between
masked and non-masked multi-head attention [43]. As shown
in Figure 4, Transformer-XL’s encoder employs cross-attention
to connect with the decoder.

Fig. 2: The decoder processes in Transformer-XL.
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(a) Multi-head Attention. (b) Masked Multi-head Attention.

Fig. 3: The comparison of Multi-Head Attention with and
without mask.

3) Differences between Transformer and Transformer-XL:
Transformer and Transformer-XL differ in Segment-Level
Recurrence, Attention with Relative Positional Encoding, and
Stochastic Temperature-Controlled Sampling, discussed in
subsequent subsections.

a) Segment-Level Recurrence:

Transformer’s fixed input length limits its ability to model
dependencies across longer segments. Transformer-XL over-
comes this with segment-level recurrence, connecting seg-
ments and forecasting future tokens. In Figure 5, Transformer-
XDL’s attention mechanisms are depicted during training and
inference with a fixed segment length of 4. In Figure 5(a),
previous segment embeddings are cached for reuse, shown
by green lines. In Figure 5(b), Transformer-XL utilizes in-
formation not just within the current segment but also from
previous ones, depicted by the green area. Segment-level
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Fig. 4: The architecture of Transformer.

recurrence significantly extends dependency length, addressing
the context fragmentation problem [3, 9].
b) Attention Using Relative Positional Encoding:

To apply segment-level recurrence, positional encoding may
prove unsuitable due to position incoherence. The attention
result between positions ¢ and j using positional encoding [43],
denoted as Aff;-s is described by Equation 1. Here E,, de-
notes the content embedding of x;, W, and W, denote the
weight matrices of query and key vectors, respectively, and
U, signifies the positional encoding of position <. Equation
(2a) describes the attention between the content embedding
added with positional encoding of positions ¢ and j. Expanding
Equation (1la) to Equation (1b) breaks it into four parts, each
defining the attention between different elements. Specifically,
part (a) represents the attention between E,, and E, part (b)
between E;, and Uj, part (c) between U; and E,, and part
(d) between U; and Uj.

Modified from Positional Encoding, Dai et al. [9] introduce
the attention result of relative positional encoding as shown in
Equation 2. This equation can be divided into four parts, each
corresponding to the symbol characters marked in Equation
(1b). In Equation (2a), the U; term in Equation (1a) is replaced
with R;_;, a sinusoid encoding matrix [43] that utilizes



the positional difference between ¢ and j to denote relative
position. Upon expanding Equation (2a) to Equation (2b), we
can employ the same conceptual framework as Equation (1b)
to comprehend it. Recognizing that utilizing the same weight
matrix Wy, to compute both content and positional information
may be suboptimal, the authors introduce two distinct weight
matrices for the key vector: Wy g and Wy, g, replacing Wy
in Equation (2b) for the computation of content and positional
information, respectively. However, given that the query vector
remains constant for all query positions, the attention towards
different words should remain consistent. Consequently, the
authors introduce two learnable parameters, w! and v7, to
individually replace the term UlT W;r of Equation (2c)in parts
(c) and (d) to obtain Equation (2d).

AP = (By, +U;) "Wy Wi (E,, +U;) (1a)
=E, W, W,:E,, + E] W] W, U,
o o (1b)
+U; W, W,E,, +U; W, W, U;
(©) ()
ATY = (B, +U) "W, Wi(E,, +R,_) (2a)
=E/ W, W,E,, +E]W/W,R,_;
(@) (b)
+U/ W, W,E,, +U W, W,R,_; (2b)
(c) (d)
= Ea—lu—,iw;rwk,EExj + ELW;Wkt,RRi—j
(a) (b)
+U/ W, W, sE,, + U/W, W, zRi_;  (20)
(c) (d)
= E] W, W, ;E,, +E] W/ W, zR;_;
(a) (b)
+u Wy gEq, +0 W zR;_; 2d)

(©) (d)

c) Stochastic Temperature-Controlled Sampling:

In Transformer-XL’s inference, stochastic temperature-
controlled sampling blends Softmax With Temperature and
Nucleus Sampling to enhance prediction diversity. Softmax
With Temperature adjusts token probabilities via Equation
3, where 7 modulates distribution spread. Nucleus Sampling
targets the smallest token sets V() with cumulative probability
exceeding threshold p for predicting subsequent tokens, ex-
pressed as > P(z|z1.4-1) > p, where P(z|z1.;—1) denotes

z€V(P)
the probability of generating token z given tokens z from 1

to?—1.

eZi /T
pi=—
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4) REMI: In this section, we begin by introducing the
MIDI-like audio representation [32]. Subsequently, we delve
into the REMI [21] audio representation and elucidate its
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Fig. 5: The attention ideas of Transformer-XL with fixed
length 4.

distinctions from MIDI-like audio representation. Finally, we
outline the processes involved in converting audio data into
REMI audio representation.

a) MIDI-like and REMI Audio Representation:

The MIDI-like audio representation converts music data into
a sequence of four distinct events: NOTE-ON, NOTE-OFF,
TIME-SHIFT, and VELOCITY. A NOTE-ON event indicates
the initiation of a note with a specified pitch, while a NOTE-
OFF event signifies its termination. A TIME-SHIFT event
advances the time step, and a VELOCITY event adjusts the
volume of subsequent notes.

REMI [21] is an audio representation that allows for flexible
local tempo changes while presenting challenges in controlling
the rhythmic and harmonic structures of the music. It also
takes advantage of MIDI-like audio representation by keeping
the NOTE-ON and the VELOCITY events with the same con-
cepts. REMI replaces the NOTE-OFF event with the NOTE-
DURATION event, which gives how long a note should be
played instead of recording when the note stops. In order to
improve the structure of audio data, the TIME-SHIFT event is
changed to the POSITION & BAR event that uses a bar as a
unit to quantify the audio information. Moreover, the TEMPO
and the CHORD events are added, where a TEMPO event
gives the tempo information of the audio and a CHORD event
represents a chord played in the audio by one of the 60 types
of chords the authors set in advance.

b) Conversion Process:
The processes involved in converting audio data into REMI
audio representation can be divided into four parts as follows:



o Transcription: The Transcription process involves trans-
forming the original audio file into the MIDI file format,
which is a standard audio protocol, to capture the audio
information. This process is automated using an API
called Piano Transcription Inference [30].

o Synchronization: Following Transcription, the Synchro-
nization process utilizes the MIDI file to compare it with
the original audio file through beat tracking. This step
allows for obtaining tempo and time-shifting information.
The comparison between a MIDI file before and after
Synchronization can be visualized in Figure 6. In the
figure, differences in the distance between the blue lines,
denoted as D, and the time-shifting at the beginning of
the file, noted as S, can be observed.

o Analysis: The Analysis process uses 12 root notes to
analyze the audio data after Synchronization as a way to
manage the chord and melody information into events.

o Quantization: Subsequent to the aforementioned pro-
cesses, the Quantization process ultimately quantizes all
audio information into tokens based on events. The
smallest unit that can be recorded is the 16th note in
the audio. It is worth noting that the time signature of
the audio must be a multiple of four.

Once the conversion processes are complete, a token dictio-
nary will define the events represented by tokens in the REMI
audio representation, as described in Section III-A4.

Time
(b) A MIDI file after Synchronization.

Fig. 6: The comparison of a MIDI file before and after
Synchronization.

5) YI-DLP: YT-DLP [16] is a fork of YouTube-dl [15],
a tool that interacts with the Youtube platform. YT-DLP
offers a plethora of options for accessing information from
YouTube, including Download options for downloading videos
and Video Selection options for obtaining a list of videos based
on specific criteria like file size and upload date.

IV. DESIGN

The architecture of the proposed genre-conditioned piano
music generation system (GENPIA) is illustrated in Figure 7.
The system is divided into three phases, which include Data
Collection, Data Pre-processing, and Model Training and
Inference. In the Data Collection phase, audio data of different
genres are gathered and labeled. Following this, the Data Pre-
processing phase manages the audio data into the anticipated
audio representation. Lastly, in the Model Training and In-
ference phase, the model acquires knowledge about the audio
representation and produces the desired output.

Data
Collection

Anime, R&B, Jazz, and Classical
piano music video/video playlist URLs on YouTube

YT-DLP API

MP3 audio files

i Data

Step 1. Data cleansing Step 2. Extension of genre .
information in REMI audio Pre-processing
Verify the time representation
signature of the
audio
Audio trimming
using Audacity Information
R REMI audio
Assess the 11(:}011ty of representation
the audio with extension
Model
Transformer-XL [I I H %). o g ;.E Training
Uy S. = |8 and
Model Model = Inference
Training Inference
Time (T =n)

Fig. 7: The architecture of GENPIA.

1) Data Collection: On the YouTube platform, an increas-
ing number of users are covering Anime and R & B music
by piano. Classical and jazz piano music also enjoys wide
recognition and popularity. Therefore, we select the Anime,
R & B, Jazz, and Classical piano music from YouTube as our
dataset.

In order to obtain the audio information from the YouTube
platform, we employ the YT-DLP [16] API mentioned in
Section III-AS. We utilize the Post-Processing options of YT-
DLP to extract audio from video on YouTube. Before starting
the training process, the audio data needs to be transcribed into
a MIDI file, which is then used to create tokens. The model
generates tokens as output, which are then converted back
into MIDI files and further transformed into the MP3 format.
Afterward, we provide either the URL of a YouTube page or
a YouTube playlist URL from which we aim to extract the
audio. As a labeling approach for the audio data, we organize
the extracted audio into separate target folders based on music
genre. Furthermore, we rename the filenames of the audio
files to include their respective genres, following a specific



format. This ensures that audio files for different genres are
appropriately labeled and organized for further processing.

2) Data Pre-processing: Since we collect the dataset our-
selves, the total number of audio files in our dataset may not
be substantial. Hence, we opt to use the REMI [21] audio
representation to pre-process our dataset. This allows us to
avoid excessively short token lengths in each audio piece and
provide an effective data structure for representing the audio
data. Prior to converting the audio data into REMI audio
representation, there are two preliminary steps: data cleansing
and genre information addition. These steps are explained as
follows.

a) Data Cleansing:

Three processes are involved in data cleansing, which is
necessary due to the limitations of REMI audio representation.

o Verify the time signature of the audio : The time signature
of the audio must be a multiple of four, as mentioned in
Section III-A4b. Hence, it is necessary to implement a
method to verify the compliance of the audio extracted by
YT-DLP [16]. The Synchronization process of REMI [21]
audio representation involves beat tracking, which is
associated with the time signature of the audio. Following
beat tracking, the Synchronization process utilizes time
shifting to adjust the audio data. However, if the time
signature is not a multiple of four, significant and ab-
normal time shifting occurs at the end of the audio data.
Audio with abnormal time shifting noted as ATS is shown
in Figure 8. Consequently, we remove all the audio with
ATS after the Synchronization process of REMI audio
representation.

— ATS

T

(LA

Time

Fig. 8: A MIDI file with an abnormal time shifting.

o Audio trimming using Audacity: In this part, we segment
each audio file into shorter clips, which helps reduce
both training and inference time. This approach also
directs the model’s focus toward the most significant
audio segments. Using Audacity [41], an audio editing
software, we manually segment our dataset into shorter
pieces that highlight the characteristic features of their
respective music genres.

o Assess the fidelity of the audio: Several tokenization
procedures involved in REMI [21] audio representation
may lead to deviations from the original audio file. For
instance, the Piano Transcription Inference [30] API, used
in the Transcription process, may not always yield perfect

accuracy and could introduce errors in pitch detection.
Additionally, the smallest unit that can be recorded in
the audio after pre-processing into REMI audio rep-
resentation is the 16th note, potentially impacting the
output. We have observed that frequent changes in tempo
within the audio, particularly in Classical and Jazz genres,
can lead to inaccuracies during processing by REMI
audio representation. To address these issues, each pre-
processed audio undergoes manual fidelity assessment
through careful listening. Any audio deemed unqualified
is removed from the dataset.

The number of audio files in each genre after each process in
data cleansing is shown in Table I. The result of data cleansing
contains 422 Anime audio clips, 462 R & B audio clips, 244
Jazz audio clips, and 189 Classical audio clips in our dataset.
Additionally, the audio clips in our dataset have a duration
that ranges from 11 to 37 seconds.

TABLE I: The number of audio in each genre after each
process in data cleansing

Number of Audio
Process (after the specified process)
Anime R&B Jazz Classical

Extracted by YT- 710 405 243 395
DLP [16]
Verify the time signa- 477 342 193 192
ture of the audio
Audio trimming using 482 480 341 300
Audacity [41]
Assess the fidelity of 422 462 244 189
the audio

b) Extension of Genre Information in REMI Audio Rep-
resentation:

To include the genre label information into the REMI [21]
audio representation, we adopt a similar approach to that of
EMOPIA [22], which adds emotion label information into
the compound word representation(CP) [19]. By utilizing the
genre label information from the filenames during the Quan-
tization process of REMI audio representation, we provide a
novel type of token that is specifically associated with the
genre of an audio file. Since the pre-processed audio tokens
are sequentially dependent due to their temporal relationship,
the genre-related token is added at the beginning of a sequence
of audio tokens as an extension of REMI audio representation.
Figure 9 illustrates the process of adding genre label informa-
tion to the REMI audio representation.

3) Model Training and Inference: The Transformer-XL [9]
model, as explained in Section III-A3a, employs the segment-
level recurrence technique to address the context fragmentation
problem and extend the dependency length of input sequences.
When shifting the condition of music generation from emotion
to genre, a model with a higher input dependency length
becomes more suitable for learning audio patterns across
various music genres. Hence, we opt for the Transformer-XL
model in our approach.
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Fig. 9: Adding genre label information into REMI audio
representation.

a) Model Training:

Our model configuration is based on the Transformer-XL [9]
applied in CP [19] with a fixed window size of 512. However,
after pre-processing, the average token length of our dataset,
converted into REMI [21] audio representation with extension,
is 776. To ensure that all tokens are considered within the fixed
window size of 512 in the Transformer-XL model, we set the
group size to 2, allowing a maximum input length of 1024.
Each input token’s ground truth is defined as the token that
follows it in the sequence. Additionally, besides the training
data, the corresponding token dictionary is required as input
to the model to determine the number of token types in the
training data, aiding the token embedding process.

The loss function used in the Transformer-XL model is
the same as in the Transformer [43] model, namely, the
cross-entropy loss [40]. In the task of music generation, the
model’s objective is to create novel audio output based on
the knowledge acquired during training. Therefore, there is
no strict requirement for employing a test dataset. Including
a test dataset in model evaluation may sometimes result in
a high calculated loss. Additionally, training the model to an
excessively low loss might lead it to simply reproduce the
training data. Therefore, we set our loss target value similar
to prior works in music generation [19, 22], which share a
similar research objective to ours.

b) Model Inference:

To generate music of a specific genre, we leverage the
way the genre information is extended in REMI [21] audio
representation, which inserts the genre label information at the
beginning of a sequence of audio tokens. When the model is
provided with the desired music genre, this genre information
is converted into a genre token by utilizing the corresponding
token dictionary. By incorporating both genre tokens and
initial tokens (i.e., bar and beat tokens) into the model, it
acquires prior knowledge about the genre. Subsequently, the
model generates the following content based on the target
genre information using Stochastic Temperature-Controlled
Sampling until it encounters an end-of-file (EOF) token. Fig-
ure 10 illustrates this generating process. After the sampling

process, we utilize the corresponding token dictionary to
convert audio tokens into events. These events are then used to
generate MIDI files. Finally, we apply the Salamander Grand
Piano [1] sound font to achieve the desired piano timbre
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Fig. 10: Generation process illustration.

V. EXPERIMENTS AND RESULTS

In this section, we employ the method of EMOPIA [22],
which represents the state-of-the-art approach for Russell’s
4Q [38] emotion-conditioned piano music generation, to
accomplish genre-conditioned piano music generation. This
serves as a benchmark to evaluate and compare with our work.
Subsequent sections offer detailed descriptions of the external
dataset utilized in the experiment, the configuration of the
experimental environment, the evaluation metrics employed,
and a comprehensive analysis of the experimental results.

A. External Dataset

It’s widely recognized that models tend to achieve better
results when trained on larger datasets. The approach outlined
in EMOPIA [22] attains its highest performance by utilizing
the Ailabs.tw 1K7 [19] dataset for pre-training. Therefore, we
also leverage the Ailabs.tw 1K7 dataset for pre-training pur-
poses. The Ailabs.tw 1K7 dataset comprises 1748 Pop piano
performances sourced from the Internet, with an average audio
duration of around 4 minutes per performance. Importantly,
the time signature of all audio files in the dataset adheres to a
multiple of four. This dataset provides a rich source of diverse
piano performances to enhance our model’s training process.

B. Experimental Environment Configuration

The experimental setup includes both hardware and software
components. We employ two sets: Set 1 for data collection and
Set 2 for data pre-processing, model training, and inference.
Set 1 features an Intel(R) Core(TM) i7-10700 CPU with 8
cores, 32 GB of RAM, an NVIDIA GeForce RTX 2060
with 6GB VRAM, and operates on Windows 11x64. Set 2
is equipped with an Intel(R) Xeon(R) Gold 5218 CPU with
12 cores, 64 GB of RAM, an NVIDIA Quadro RTX 6000
with 24GB VRAM, and runs on Ubuntu 22.04.1 LTS. During
model training, Adam optimizer [27] is utilized, the batch
size is set to 4, the learning rate is set to 0.0001, and the
random seed is fixed to 2222. The training process aims to
attain a target loss of 0.2, consistent with the loss value used
in CP [19]. For the pre-training approach, the model initially
undergoes training with the Ailabs.tw 1K7 [19] dataset until a



loss of 0.3 is achieved, consistent with the loss value used in
EMOPIA [22]. Subsequently, the pre-trained model is further
trained with our dataset until a loss of 0.2 is attained. Notably,
during pre-training, the genre token in the dataset is treated as
ignore. To ensure an output with a desired level of diversity, we
set the parameter values of 7 to 1.2 and p to 0.9 in Stochastic
Temperature-Controlled Sampling, which are the same as in
CP [19].

C. Evaluation Metrics

The most effective method for evaluating a music gener-
ation model currently remains listening tests. Therefore, we
employ subjective evaluation metrics in our research, which
include Richness, Humanness, Correctness, Structureness, and
Genre Similarity. While Richness, Humanness, Correctness,
and Structureness are utilized in prior works [19, 22], Genre
Similarity is a new addition to support our research. These
subjective evaluation metrics are described as follows.

1) Richness: Evaluates the diversity and attraction level of
the output audio.

2) Humanness: Assesses the level of similarity between the
output audio and the audio performed by a human.

3) Correctness: Measures the absence of perceived incor-
rect notes in the output audio based on music theory.

4) Structureness: Determines the level of presence of struc-
tural patterns such as recurring themes or melodic motifs
in the output audio.

5) Genre Similarity: Measures the match level of the output
audio with the target genre.

D. Experimental Results

This section presents the experimental results of four dif-
ferent types of models: EMOPIA [22] and GENPIA with
and GENPIA without pre-training. We obtained the results
utilizing a listening questionnaire designed by ourselves and
divided into four parts, each corresponding to one of the four
music genres. Each part contains nine piano music clips, with
a duration less than 30 seconds, comprising one demo clip and
eight evaluation clips. Despite the clips being slightly shorter
than 30 seconds, it is sufficient to evaluate their structural
coherence. The demo clip is a randomly selected audio file
from our dataset that corresponds to the specific music genre.
The purpose of selecting the demo clip is to ensure that
listeners are more familiar with a particular music genre. The
eight clips to be evaluated in each part are composed of two
audio outputs of four different types of models. In summary,
there are two audio outputs for each type of model in each
part, resulting in a total of 32 music clips for evaluation in
the listening questionnaire. Listeners evaluate the music clip
based on the metrics mentioned in Section V-C rating them
on a five-point Likert scale [47]. Typically, it takes about 30
minutes to finish the listening questionnaire.

The survey included 55 participants, mainly from the
school’s wind band, choir, and guitar clubs. Among them, 4
had no prior music instrument learning experience, 4 had less
than one year of experience, 15 had 1 to 5 years, 26 had 6

to 10 years, and 6 had over 11 years of experience. Finally,
we demonstrate the mean outcomes of four types of music
genres, which is the average results of 55 subjects rounded to
the third decimal place. In our work (GENPIA), the metrics
are represented as follows: Richness (R), Humanness (H),
Correctness (C), Structureness (S), and Genre Similarity (G).

TABLE II: Survey results of the Anime music genre.
Bold with Underline indicates best, and Underline indicates
second.

Anime
Subjective Metrics
Method R H C S G
EMOPIA 3.173 2964 2827 2.873 2482
GENPIA 3927 3.655 3.682 3.6 3.245
EMOPIA w/ pre-training 3264 3.009 2.864 2945 2.873
GENPIA w/ pre-training 4.018 3.827 3.718 3.836 3.782

According to Table II GENPIA with pre-training exhibits
superior performance in the Anime music genre compared
to other methods. It outperforms other approaches across
all subjective metrics. Moreover, even without pre-training,
GENPIA still achieves the second-highest rankings in all
subjective metrics.

TABLE III: Survey results of the R & B music genre.
Bold with Underline indicates best, and Underline indicates
second.

R& B
Subjective Metrics
Method R H C S G
EMOPIA 2.882 2945 2.9 2.655 2.582
GENPIA 3.445 3.636 3.718 3.464 34
EMOPIA w/ pre-training 3.009 3.263 3.136 3.09 3.027
GENPIA w/ pre-training 3.255 3.6 3227 3.427 33

According to Table III, it can be seen that GENPIA with-
out pre-training surpasses other methods in terms of all the
subjective metrics within the R & B music genre. With pre-
training applied, GENPIA consistently achieves the second-
highest ranking across all subjective metrics.

TABLE IV: Survey results of the Jazz music genre.
Bold with Underline indicates best, and Underline indicates
second.

Jazz
Subjective Metrics
Method R H C S G
EMOPIA 2.6 2.536  2.564 2564 2.509
GENPIA 3409 3.627 3.618 3.745 3.573
EMOPIA w/ pre-training 3418 3.127 2.791 3.118 3.055
GENPIA w/ pre-training 3.364 3.1 3.055 3.155 3.1

As shown in Table IV, GENPIA without pre-training out-
performs other methods in terms of subjective metrics Hu-
manness, Correctness, Structureness, and Genre Similarity.
Additionally, it obtains the second place in the subjective
metric Richness. EMOPIA [22] with pre-training obtains first
place and second place in subjective metrics Richness and



Humanness, respectively. In the context of pre-training utiliza-
tion, GENPIA achieves the second position across subjective
metrics Correctness, Structureness, and Genre Similarity. Fur-
thermore, GENPIA with and without pre-training demonstrates
only a minor disparity compared to EMOPIA with pre-training
in subjective metric Humanness and Richness, respectively.

TABLE V: Survey results of the Classical music genre.
Bold with Underline indicates best, and Underline indicates
second.

Classical
Subjective Metrics
Method R H C S G
EMOPIA 2.8 2.845 2591 2.682 2.7
GENPIA 2.8 3555 3582 3391 3.664
EMOPIA w/ pre-training 3191 2918 2909 2.927 2.845
GENPIA w/ pre-training 3.164 3.664 3.836 3436 3.391

Table V highlights that GENPIA with pre-training out-
performs other methods in subjective metrics Humanness,
Correctness, and Structureness, and ranks second in both sub-
jective metrics Richness and Genre Similarity. Even without
pre-training, GENPIA outperforms other methods in subjective
metric Genre Similarity and achieves second place in terms of
subjective metrics Humanness, Correctness, and Structureness.
Additionally, EMOPIA [22] acquires the first place in terms
of subjective metric Richness. However, when pre-training
is applied, GENPIA has only a minor disparity compared
to EMOPIA with pre-training in terms of subjective metric
Richness.

Based on the aforementioned findings, it can be concluded
that GENPIA with pre-training demonstrates the overall best
performance within the Anime and Classical music genres.
Conversely, GENPIA without pre-training has the best overall
performance within the R & B and Jazz music genres. These
outcomes indicate that GENPIA is well-suited for our research
objective. Moreover, when pre-training is utilized, GENPIA
has the potential to enhance performance within certain music
genres. We believe the reason behind this observation is that
the music genres included in the pre-training data closely align
with the specific music genres we have chosen.

VI. CONCLUSION

This study proposes GENPIA, a system for genre con-
ditioned piano music generation. The system involves the
collection and labeling of a custom music dataset. To address
the limitations of REMI [21] audio representation, we perform
data cleansing techniques before converting the audio files into
REMI audio representation with extension. To better construct
the audio data with its music genre, we extend the REMI audio
representation to incorporate genre information in data pre-
processing. Our model utilizes Transformer-XL [9], which can
better capture long-range dependencies, a crucial capability
for learning audio patterns across diverse music genres. Addi-
tionally, the implemented genre information addition supports
model inference. According to the survey results, our approach

is better than the EMOPIA method [22] in the task of genre-
conditioned piano music generation using our custom music
dataset. Furthermore, by incorporating pre-training techniques,
our approach demonstrates improved performance within the
Anime music genre in all the subjective metrics, and within the
Classical music genre in the subjective metrics of Richness,
Humanness, Correctness, and Structureness.
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