FLCrypt — Secure Federated Learning for Audio
Event Classification using Homomorphic Encryption

Kay Fuhrmeister*, Hao Cuif, Artem Yaroshchuk* and Thomas Kollmer?
Fraunhofer IDMT
Ilmenau, Germany
Email: *kay.christopher.fuhrmeister @idmt.fraunhofer.de, Thao.cui@idmt.fraunhofer.de, iartem.yaroshchuk@idmt.fraunhofer.de,
§thomas.koellmer @idmt.fraunhofer.de

Abstract—In this paper, we introduce FLCrypt', a library
designed to enhance Federated Learning with additional privacy
guarantees by applying Fully Homomorphic Encryption to the
model aggregation stage, thereby preventing the aggregator from
accessing the unencrypted model parameters of the training
participants.

We evaluate our approach by comparing its accuracy against
an unencrypted baseline using an audio classification task aimed
at distinguishing metal balls with different surfaces, which serves
as a proxy for fault detection in industrial sound analysis.
Our findings indicate a marginal decrease in accuracy due to
applying Fully Homomorphic Encryption, alongside a significant
increase in both runtime and memory demands. Our analysis
also concludes that runtime increases linearly with the number
of model parameters. Our results lead us to affirm the viability of
FLCrypt for Federated Learning applications in acoustic sensor
networks with elevated security requirements such as sound
classification.

Index Terms—Homomorphic Encryption, Federated Learning,
Security, Privacy, Audio Event Detection, Acoustic Sensor Net-
works.

I. INTRODUCTION

With the growing desire to leverage the advantages of Al
in a various settings the need to collect large amounts of data
has increased tremendously. One such setting is sound event
detection. Since the audio recordings collected for this purpose
can contain sensitive information, this leads to concerns about
the storage of said data as well as the privacy of the individuals
whose data was collected. Federated Learning (FL) is a
machine learning approach designed to address these concerns.

FL is a collaborative learning framework where a single
(global) machine learning model is created by the aggregation
of several local models from different end devices. This is done
on a central server with the use of an aggregation algorithm,
for example by averaging the weights of the local models. The
training is carried out by the end devices locally and without
transmitting potentially sensitive training data to a centralized
location, thus, enhancing privacy. In addition, it eliminates the
necessity to store large amounts of data in a single location,
reducing the risk of data breaches. Further, the operational
costs of distributing data are reduced to sharing significantly
smaller models while also decreasing the cost of gathering and

IFor evaluation access to FLCrypt, please contact the main author or reach
us via https://www.idmt.fraunhofer.de/en/contact.html.

aggregating said data. Considering the prevalence of Internet
of Things (IoT) devices, FL enables collaborative learning
for tasks that benefit from a variety of different information
sources without compromising the privacy of those sources
[10]. As such, the use of privacy enhancing technologies
such as homomorphic encryption was identified in [31] as
a promising research topic in the context of the Internet of
Sounds (IoS). Sound analysis is an area that can greatly benefit
from this approach since acoustic sensor networks have to
function in variety of environments with different background
noises and different sound events occurring with varying levels
of frequency while privacy regarding the audio recordings
needs to be protected.

Considering legal regulations that protect data privacy such
as the General Data Protection Regulation (GDPR), careless
handling of audio data is a significant risk for data holders
both legally and in terms of public image. Secondly, privacy
risks can deter individuals from volunteering their data which
can impede data availability. Hence, it is in the interest of data
curators as well as data donors that machine learning preserves
privacy.

However, leveraging the potential of machine learning while
avoiding potential privacy violations is not an easy task [16].
The benefits of FL. make it an attractive approach to mitigate
privacy risks. Still, even the disclosure of model weights may
reveal information about the underlying data to potential ad-
versaries as was shown through membership inference attacks
in [30], [36], [6]. Additionally, model inversion attacks have
been carried out in [12]. Therefore, FL applications still need
to be designed with additional security measures to protect
private data. One possibility to improve upon the security
of FL is provided by Homomorphic Encryption (HE) which
describes encryption techniques that allow computations on
encrypted values. This allows for the encryption of model
weights and to perform the model aggregation without de-
crypting them. Thus, the plaintext model is never revealed to
the aggregator and information leakage from said local models
to the server is prevented. Further, combining FL. with HE
allows us to forego integrating the encryption into the machine
learning algorithms directly which is more computationally
efficient while still substantially increasing security. This is an
important advantage for applications in sensor networks with

limited resources.

A. Outline

The paper is organized as follows. In Section II, we provide
the preliminaries of FL and in Section III the preliminaries of
HE. In Section III-A we explain possible security threats in
the FL setting. In section Section IV, we provide an overview
of applications of HE in application oriented FL settings
and Section V contains the evaluation of our experiments
of applying HE to sound event detection in an FL context
using our framework FLCrypt. To evaluate the results, we
compare the model accuracy to the unencrypted baseline using
two FL strategies, federated averaging (FedAvg) and federated
proximal (FedProx). We conclude our evaluation in Section VI
and illustrate future research directions.

II. FEDERATED LEARNING

Federated Learning is a machine learning approach where
several models are trained across multiple end devices (clients)
and are aggregated by a server into a global model. The
aggregated model is then sent back to every client. Instead
of exchanging training data, only the model parameters are
exchanged. This eliminates the need to store large amounts of
data in a single location and lets data holders retain control
of said data. It was introduced in 2016 in [23] and has since
been applied to variety of applications, including the field of
audio classification.

By having access to more data from different sources, FL
can mitigate imbalances such as a lack of data for certain
classes or bias in the local data sets. That being said, het-
erogeneous data can also be detrimental to the accuracy of
models obtained through FL training [22] and this is a major
challenge when applying FL to realistic settings [19]. To
address this issue several approaches have been proposed in
[29], [37] and [26] that significantly improve FL results in
the heterogenous setting compared to standard FL methods.
As such, FL presents us with the opportunity to achieve good
accuracy and model generalization in a decentralized learning
setting.

A. Federated Learning Aggregation Strategies

The FL approach itself does not specify a particular ag-
gregation method. In this paper, we analyze the Federated
Averaging (FedAvg) and the Federated Proximal (FedProx).
The FedAvg algorithm, proposed in [23], computes a weighted
average of individual model parameters to produce a final
global model. The local model parameters are weighted with
respect to the client’s proportion of the data to ensure that
the local model’s impact is proportional to the amount of
information it contributes to the training process. However, the
final aggregated model might not perform as well for clients
that contribute comparatively little data.

The FedProx algorithm was introduced in [20] in order to
improve upon FedAvg for hardware and data heterogeneity
across clients. It does so by introducing an adaptive regulariza-
tion term on the clients’ loss functions that favors local model

Model Fusion
in Encrypted Domain

e ®s

Return Encrypted
Aggregated Model

Send Encrypted
Model Weights

Fig. 1: Workflow of FL using HE. First the clients train their
local models and encrypt the model weights. The encrypted
weights are then sent to the server and aggregated to a global
model without decrypting them. After that, the global model
parameters are sent back to the clients. The clients decrypt the
global parameters and use them to update their local models.
This process is repeated until the global model converges or
for a fixed number of rounds.

parameters that are close to the global model in each round
of FL. The larger it is, more closeness to the global model
will be incentivized. The server-side aggregation of the clients’
model parameters stays the same as in FedAvg. Previously, FL
was applied to sound event detection for domestic and urban
sound monitoring [18] and to audio classification for key word
spotting and urban sound classification [14] without the use
of additional privacy enhancing technologies. There have also
been experiments of using wireless acoustic sensor network in
combination with machine learning for vehicle classification
([33], [24]), yielding promising results. Utilizing wireless
acoustic networks is of great interest for environmental noise
monitoring and audio event detection, especially in the context
of Smart Cities [1]. However, to the best of our knowledge
such applications do not feature additional privacy enhance-
ments to address concerns relating to the GDPR for Smart
Cities or to mitigate the shortcomings of FL outlined above.

III. FULLY HOMOMORPHIC ENCRYPTION

Homomorphic encryption is a cryptographic technique
which allows for computations to be performed on encrypted
data without the need to decrypt it. In the context of FL it can
be used to encrypt the local model parameters of a client before
sending it to the server to aggregate them with the parameters
of the other clients participating in the training process. The
aggregation will then be performed on the encrypted data in
the form of computing a weighted average of the clients’
model parameters. The weight of an individual clients is given
by the size of its training dataset divided by the number
of training samples across all clients. Afterwards, the still
encrypted global model parameters are sent back to the clients
where they can be decrypted. The local model is subsequently
updated with the global parameters. By avoiding disclosure of
the local plaintext models to the server it would effectively
eliminate the possibility of attacks by the server on local
models. The basic workflow of adding HE to FL is depicted
in Figure 1.

Popular Fully Homomorphic Encryption (FHE) schemes are
the CKKS scheme [8] and the BFV scheme [5]. The BFV
scheme is an exact encryption scheme that supports modular
arithmetic over finite fields. A major limitation of this scheme
is that the message space is over integers. Hence, it cannot be
applied in practical settings where input values might not be
representable using only integers. CKKS is an approximate,
asymmetric encryption scheme that supports arithmetic over
complex numbers. The scheme incurs an approximation er-
ror after decryption for enabling computations over arbitrary
floating-point numbers. The error introduced by the encryption
will be kept within a small range based on chosen encryption
parameters, so that it will not significantly influence the com-
putation results [8]. Therefore, the parameters need to be set
according to the needed accuracy for the computation task at
hand. Despite the approximate nature of computations, CKKS
provides more flexibility than BFV regarding its usability in
practice due to its arbitrary input space. Hence, we will focus
on the CKKS scheme in this paper.

The CKKS scheme has been implemented in several open-
source libraries. The library that was used for the purposes of
this paper is TenSEAL [3].

A. Threat Model

There are several possibilities in the process of FL. where
information about the clients could be obtained by parties
not privy to that information. These scenarios include both
malicious actors, as well as curious participants of the training
process. These include:

o Honest-but-curious aggregator: The aggregator (server)
follows the FL protocol without modifying the received
data or the model sent back to the clients but still tries to
extract as much information about the clients as possible.

 Collusion: Participants of the training process may choose
to collude in order to send false data to disrupt the training
or try to gain information of other participants.

o Outsider attacks: Attackers outside of the network may
try to obtain information about the data on the edge
devices by interacting with the actors involved in the FL
process, either during or after training.

Ideally, all of these threat scenarios should be mitigated
for FL to be secure. We assume that the communication
between server and clients as well as the data storage of
the clients is secure since this can be achieved through
established cryptographic means and is not a problem unique
to FL. HE can address some, but not all of these threat
scenarios. Threats from an Honest-but-Curious aggregator are
prevented by concealing the plaintext model parameters from
it. However, the protection of HE is only active during training,
hence, information leakage can still occur when postprocessing
a model that was trained using FL even with the use of HE.
This needs to be taken into account and mitigated by other
means if possible.

Moreover, HE does not eliminate collusion attacks from
multiple collaborating clients. This can be mitigated by uti-

lizing multi-key approaches, such as the ones mentioned in
Section IV.

IV. RELATED WORK

Combining HE and FL has already been successfully uti-
lized in the health domain. HE was incorporated into a FL
COVID-19 detection algorithm using the BFV scheme in
[34]. The algorithm is a binary classifier that detects COVID-
19 infections based on the X-ray image of a patient’s lung.
The accuracy of the algorithm with HE was comparable to
the unencrypted baseline and in some instances even better
while the runtime of the HE approach increased significantly,
especially when increasing the number of clients.

The use of HE was tested for IoT communications on the
N-BaloT dataset used for the detection of botnet attacks on
IoT devices and achieved high accuracy, precision and recall
in detecting malicious activity [15].

Additionally, HE was used in conjunction with FL to
analyze network traffic [28]. Here, HE was incorporated into
a model for predicting network traffic volume. This approach
also yielded good results. Surprisingly, the HE implementation
produced better results than the base FL approach in some
instances. One possible explanation of this improvement is
better generalization due to encryption noise acting as a
regularization factor.

One shortcoming of the basic HE setup is that a shared
secret key is used by all clients. Otherwise, the clients’ decryp-
tion of the updated global model would be invalid. However,
this leads to the possibility of attacks by adversarial clients.
For example, a client could collude with the server to obtain
the models of other clients to obtain sensitive information.
This means that the basic HE approach assumes that the
clients are trustworthy. To mitigate this problem, multi-key
HE schemes have been proposed [7], [21]. Further, in [27],
the authors propose a multi-key HE scheme that mitigates
model poisoning attacks. Thus, shortcomings of plain HE
outlined in Section III-A are improved upon. An approach for
improving the performance of HE in a FL setting is given in
[17]. Here, the authors utilize HE to encrypt model parameters
only selectively. The ratio of encrypted parameters can be set
depending on the need to decrease overhead introduced by the
encryption. The authors were successful in reducing overhead
and empirically demonstrated defense effectiveness against
gradient inversion in [38] and language model inversion in
[11]. In [32], a similar approach to ours was tested. Here,
the authors implemented their own version of a multi-key
approach based on [21] and, similar to our approach, integrated
it into Flower, an open-source framework for FL [4]. The
authors tested their approach on X-ray images for the COVID-
19 detection use case of [34] mentioned above. The use of HE
leads to a small drop in accuracy which mirrors our results.
Notable for the practical application of HE is the potential
for side-channel attacks on the CKKS on edge devices. In [2],
the authors showcase the feasibility of such attacks against the
CKKS implementation of the SEAL library. It is possible to
deduce the secret key from power traces taken during the key

generation process using machine learning. This leads us to
be cautious about the use of SEAL in practical settings in its
current version.

V. FLCRYPT

FLCrypt is the FL framework, which we used for the
experiments described in this paper. It is largely based on
open-source libraries. We used a custom version of Flower
[4] for the FL setup and integrated the CKKS functionality of
the TenSEAL library to encrypt client model updates before
transmitting them to the server for aggregation. Moreover, we
utilized the Hydra framework [35] to manage configurations
for our experiments. For our customized Flower version, we
added an extra payload field to the instructions and response
classes for the client and server to make it easier to send the
model parameters back and forth. For the encryption of model
parameters, we utilize the CKKS Vector class of TenSEAL. For
this, the model parameters have to be flattened, meaning that
the original shape has to be restored for the model update. This
is done to decrease the size of the encrypted model. The FL
functionality is provided by Flower. The only further changes
to the framework are adjustments to the computations of the
server-side aggregation in order to handle the encrypted values.

A. Experiments

The experiments were all conducted using FLCrypt on the
metal ball data set published in [13]. The data set contains
audio recordings of metal balls rolling down a steel slide
as a part of a bigger track. It comprises three classes that
correspond to different surface coatings of the metal balls, one
of which is scratched. The audio was recorded using a low-cost
microphone and the steel slide was surrounded with a casing to
dampen background noise. This data set was originally created
to improve machine learning applications for industrial sound
analysis as there is a scarcity of usable data in that field. In this
context the data set can be used to develop industrial acoustic
quality control applications based on material conditions with
emphasis on fault detection. According to the original paper,
the dataset is relatively easy for the given classification task.
A Deep Neural Network (DNN) baseline accuracy close to
99% was reported by the authors. Due to its simplicity, it
provides a realistic initial target for IoT applications with
limited computation power of the edge devices. We use it as
a first step in showcasing the effectiveness of applying HE
to audio event detection with the possibility of extending our
approach to more complex use cases in the future.

For our FL experiments, we split the original balanced
data set into three separate client partitions, consisting of 450
training and 57 test samples each. We ensure that each partition
comprises a balanced number of examples corresponding to
only two of the three classes, with the missing one different
for each partition. The test sets were all evenly split into 19
samples from each of the three classes.

B. Setup

We use a HE implementation with a circuit length of two, a
128-bit security level and a precision of 240 bits. To assess the

effect of the HE we run two encrypted FL setups - FedAvg and
FedProx - and compare them with the unencrypted baseline of
FedAvg. Additionally, we also compare the strategies against
each other.

We executed 20 rounds of FL using three clients. Each client
locally trained for three epochs per round. To evaluate the
aggregated global model, we measured the accuracy and loss
on the local test data of each client. The model used by the
clients is a Convolutional Neural Network (CNN) with two
2D convolutional layers and ReLU activation. The model also
includes a batch normalization layer and an average pooling
layer after each convolutional layer. The model has a total of
2745 parameters. The hyperparameters were the same across
all clients and both strategies and are summarized in Table I.

TABLE I: The training hyperparameters used for the experi-
ments.

Hyperparameter Value
Learning rate 0.001
Batch size 64
Validation split 0.1
Optimizer Adam
Loss Softmax cross entropy

For the FedProx strategy a proximal parameter of y = 0.02
was used. The training hyperparameters were the same across
all clients and both strategies and summarized in Table I.

To evaluate the runtime performance, we compare execution
times of each FL process step. We also analyze transmission
overheads introduced by HE by examining different sizes
of serialized parameters before and after encryption. The
hardware specifications that were used for the experiments are
shown in Section V-B.

C. Evaluation

The FL runs with HE consistently show a similar accuracy
as the unencrypted baseline. The FedAvg strategy as well
FedProx get high accuracies of over 99% on the local client
test sets. The average training loss and accuracy across three
runs can be seen in Figure 2a. The graphs also show that
the client models quickly converge to achieve near perfect
accuracy. Compared to each other, the final accuracies of
FedAvg and FedProx are the same but the client models
converges faster for FedProx than for FedAvg as shown in
Figure 2b. This suggests that training time can be saved
by employing the FedProx strategy. Overall, the unencrypted
FedAvg baseline model routinely achieves an accuracy of
1 shown in Figure 2c. Therefore, the drop in performance
when using HE is marginal. This is in line with previous
applications of HE to FL in other use cases of medical

TABLE II: The specification that were used for the experi-
ments.

Spec Server Client
CPU Intel Xeon CPU E5-2620 v4 Intel Xeon CPU E5-2650 v4
Graphics card GeForce GTX 1080 Ti GeForce GTX 1080 Ti
Memory 64 GB 128 GB

TABLE III: Comparison of runtime for different processes
between encrypted and unencrypted runs.

Process Time unencrypted Time encrypted

(sec) (sec)

Encryption - 0.31

Decryption - 0.031

Serialization - 0.07

Deserialization - 0.02

Server aggregation 0.00066 0.07
Complete run 27 48

image classification [34] and network traffic prediction [28],
described in Section IV. The approach in [15] also achieves
an accuracy of over 99% for identifying malicious traffic in
an IoT network. This indicates a general viability of using HE
in the context of FL independent from the specific use case.
Furthermore, [34] used an exact HE scheme which does not
showcase a notable improvement in terms of accuracy over our
use of the CKKS scheme. This indicates that the approximate
nature of CKKS does not hurt model performance in practical
applications while offering more flexibility regarding its use.

The difference in runtime performance between the HE
and the unencrypted setup is significant. The baseline total
execution time is 27 seconds on average across three runs
of FL. After incorporating HE into the training, the overall
runtime increases to around 48 seconds for both strategies. A
more detailed runtime breakdown is provided in Table III. For
the individual processes, the values are given as the average
execution time of that process across 20 rounds of FL training.
This includes all clients and the server. Plaintext serialization
and deserialization in the baseline setup are carried out by the
Flower library internally and are assumed to be negligible in
our setup.

It can be observed that the runtime increase due to the
encryption is not symmetric. The encryption and serialization
processes take significantly longer than their counterparts.
There is also a large increase in the server’s aggregation time.
In general, it can be observed that the encryption time is the
biggest factor in the overall time increase on the client side.

In [34], the run time for 128-bit security and three clients
was around 5000 seconds using the BFV scheme of SEAL
which is significantly higher than our result. However, since
the size of the model was not specified, it is unclear how
much of that difference is due to the different schemes. In
[28], the authors found a runtime increase from around 0.07
seconds for FL with plaintext to around 15.5 seconds when
using the CKKS implementation in TenSEAL for a model with
two layers with 400 neurons respectively. Unfortunately, the
number of clients is not specified. Still, compared to our model
with 2745 parameters this roughly scales with respect to the
number of model parameters.

To analyze the development of the encrypted model size,
we examine a randomly initialized (768,3) array of model
parameters which corresponds to the largest layer of our model
with entries ranging from zero to one. Unencrypted, it has a
size of 18.6 KB. After encryption and serialization, its size
grows to 301 KB. This marks an increase compared to the

Client 1 Client 2 Client 3
PP
09 | 7 f[*r” i
0.8 B B
> 0.7 + g
® 0.6/ 1 1
S05+% 11 E
g 0.4+ q q
gz 1 —— train 1 —— train 1 —— train
0:1 4 validation 4 validation 4 validation
0.0 T T u
T —— train I —— train —— train
0.9 4 validation validation 1 validation
0.8 E il
0.7 4 g il
@ 0.6 b il
2 0.5+ 7] E
0.4]]
0.3 1]
0.2 1] il
0.14 R b
0.0 e 4 4

T T T
0 10 20 30 0 10 20 30 0 10 20 30
epoch epoch epoch

(a) Accuracy and loss of the global model for the three clients using
HE for FedAvg.

Client 1 Client 2 Client 3
o e])
0.9 147 B B r"‘
0.8 1 -+
& 0.7+ 1 1
@ 0.6 4 - 4
2 0.5 4 B —I
g 0.4+ R R
g;] —— train 1i —— frain] —— train
0:1 4 validation 4 validation 4 validation
0.0 T T T
—— ftrain { —— train 1 — train
validation validation ‘. validation
3] |
807 E
= 0.6
a5 4 |
0.4 4
0.3 J 1i
0.2 1 E 3
0.1 - E 3 Ls—.....n —
0.0+ b b S

T T T
0 10 20 30 0 10 20 30 0 10 20 30
epoch epoch

(b) Accuracy and loss of the global model for the three clients using
HE for FedProx.

Client 1 Client 2 Client 3
F
0.9 4 b b
0.8 B B
> 0.7 4 B B
3 0.6 1 1
2 0.5 1% b b
g 0.4+ R R
g; 7] —— train 7 = ftrain 7 —— ftrain
0:1 4 validation 4 validation 4 validation
0.0 T T u
I —— ftrain —— ftrain T} —— ftrain
0.9 4 validation E validation _ validation
0.8] i
@ g.g E] i
2 05 1 1
0.4 - b -
0.3 1 b i
0.2 b]
8-%:]] W oeter ot

T T T
0 10 20 30 0 10 20 30 0 10 20 30
epoch epoch epoch

(c) Baseline accuracy and loss for FedAvg.

Fig. 2: Comparison of accuracy for the FL strategies with HE
to the unencrypted baseline.

TABLE IV: Data size in relation to number of parameters.

Input array Size original ~ Size encrypted ~ Number of parameters Ratio
(KB) (KB)

(384,3) 9.3 301 1152 32.3

(768, 3) 18.6 301 2304 16.2
(1536, 3) 37 601 4608 16.2
(3072, 3) 74 902 9216 12.2
(6144, 3) 148 1504 18432 10.2
(12288, 3) 295 2708 36864 9.2
(24576, 3) 590 5414 73728 9.2
(49152, 3) 1180 10828 147456 9.2
(98304, 3) 2359 21658 294912 9.2

TABLE V: Projected size of well-known neural networks.

Input array Size original ~ Size encrypted ~ Number of parameters
(MB) (MB) (Million)
ResNet50 98 901 25.6
ResNet101 171 1573 447
ResNet152 232 2134 60.4
VGG16 528 4858 138.4
VGG19 549 5051 143.7
ConvNeXtSmall 192 1766 50.2
ConvNeXtBase 339 3110 88.5
ConvNeXtLarge 755 6946 197.7
MobileNet 16 147 43
NASNetMobile 23 212 53
EfficientNetBO 29 267 53
EfficientNetB7 256 2355 66.7

original array size by a factor of 32.2. For larger number of
model parameters, the size increase settles on a ratio of 9.2.
This matches the linear runtime increase in relation to the
number of model parameters found in [25]. The encryption
increases the size of the model by an order of magnitude. In
total, we obtain an encrypted size of 4.2 MB for our model
compared to an original size of 12.6 KB. This is because every
encrypted model weight has a size of at least 0.3 MB, leading
to a disproportionate increase in size for small models.

An overview of the ciphertext size for different numbers
of parameters can be found in Table IV. From this, we also
extrapolate the encrypted size of a selection of well-known
neural networks shown in Table V.

D. Discussion

Our application of FHE to FL yields promising results for
our use case of audio event detection. Although there is a small
decrease in accuracy, the quality of the global model remains
high while enhancing privacy. Still, the model performance
under realistic environmental conditions warrants further in-
vestigation since HE could have a more detrimental effect in
such settings. Further, it is still unclear how well our current
approach alone would extent to settings with large models
and a lot of clients. More research on that is needed. This
is especially relevant for edge devices where computational
power and memory capacity are limited. Still, this is promising
first step. It should be noted that, to the best of our knowledge,
no counter measure to the side-channel attack in [2] has been
implemented in SEAL (release 4.1). Therefore, current real-
world implementations of HE that use SEAL should be viewed
with caution. Moreover, other libraries should be tested for
similar attacks. Moreover, it should be considered that the
choice of encryption parameters has a significant impact on
the data size of the encrypted model. The results of this paper

were all obtained for 128-bit security, 40-bit precision and
a circuit length of two. Increasing these parameters leads to
an increase of the data size. Notably, an increase in data
size would also increase the computational overhead which
could lead to problems in realistic deployments on energy
efficient sensor nodes. Our results suggest that the strategy
FedProx is preferable over FedAvg in such circumstances since
model convergence can be achieved with less training time
while achieving the same level of accuracy. Still, a tradeoff
between security and computation power might be necessary
in practice. However, a certain level of overhead needs to be
accommodated to ensure the security of the encryption. Thus,
choosing an appropriate set of encryption parameters should
also take this into consideration. However, we have not yet
analyzed the exact impact of adjusting these parameters in
a rigorous manner. This would be an interesting question for
further analysis, especially since more sophisticated FL strate-
gies are likely to need more complex encryption parameters.
Another possible avenue of further research is to improve upon
the security of HE by integrating Differential Privacy into the
current approach. Differential Privacy involves adding random
noise to the output of an algorithm to masks the contribution
of individual data points [9], thus, mitigating inference attacks
on the model.

VI. CONCLUSION

We have successfully incorporated HE into FL for audio
event classification for two different aggregation strategies
and showed the effectiveness of our approach. Additionally,
we have shown that FedProx retains advantages over FedAvg
under HE. We have identified key reasons for a substantial
runtime increase when using HE for FL that impede its
scalability. We identified the number of model parameters as
the main factor that determines the size of the encrypted data
and analyzed how the encryption time develops in relation
to it. This already showcases the utility of HE in certain
settings, especially in our use case of sound classification
where model size is moderate. While our experiments lead
us to be optimistic, more work needs to be done analyze and
improve the viability for HE in other practical settings since
the linear increase relative to the number of model parameters
might become infeasible for large model sizes, especially due
to the rise of large-scale machine learning and the increasing
prevalence of edge devices. Furthermore, the possibility of
side-channel attacks needs to be further investigated and
prevented before deployment in real scenarios.

Acknowledgements: This paper was made within the context
of the SEC-Learn project on secure FL for edge devices at
Fraunhofer IDMT. We would like to extend our gratitude to
our colleagues for the fruitful discussions about the results
that were obtained and to Sebastian Speitel for his prototype
of FLCrypt.

REFERENCES
[1] Alias, F., Alsina-Pages, R.M.: Review of wireless acoustic
sensor networks for environmental noise monitoring in

[2]

[4]
[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

smart cities. Journal of Sensors 2019(1), 7634860 (2019).
https://doi.org/https://doi.org/10.1155/2019/7634860

Aydin, F.,, Aysu, A.: Leaking secrets in homomorphic encryption with
side-channel attacks. Journal of Cryptographic Engineering (2024).
https://doi.org/10.1007/s13389-023-00340-2

Benaissa, A., et al.: Tenseal: A library for encrypted tensor operations
using homomorphic encryption (2021)

Beutel, D.J., et al.: Flower: A friendly federated learning research
framework (2022)

Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In: Annual cryptology
conference. pp. 505-524. Springer (2011)

Carlini, N., et al.: Membership inference attacks from first principles. In:
2022 IEEE Symposium on Security and Privacy (SP). pp. 1897-1914.
IEEE (2022)

Chen, H., et al.: Multi-key homomorphic encryption from tthe. In: Ad-
vances in Cryptology—ASIACRYPT 2019: 25th International Conference
on the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part II 25. pp. 446—
472. Springer (2019)

Cheon, J.H., et al.: Homomorphic encryption for arithmetic of approx-
imate numbers. In: Advances in Cryptology—ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I 23. pp. 409-437. Springer (2017)

Dwork, C., et al.: Calibrating noise to sensitivity in private data analysis.
In: Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. pp.
265-284. Springer (2006)

Feraudo, A., et al.: Colearn: Enabling federated learning in mud-
compliant iot edge networks. In: Proceedings of the Third ACM In-
ternational Workshop on Edge Systems, Analytics and Networking. pp.
25-30 (2020)

Fowl, L.H., et al.: Decepticons: Corrupted transformers breach privacy
in federated learning for language models. In: The Eleventh International
Conference on Learning Representations (2022)

Fredrikson, M., et al.: Model inversion attacks that exploit confidence
information and basic countermeasures. In: Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security.
pp. 1322-1333 (2015)

Grollmisch, S., et al.: Sounding industry: Challenges and datasets for
industrial sound analysis. In: 2019 27th European Signal Processing
Conference (EUSIPCO). pp. 1-5. IEEE (2019)

Gudur, G.K., Perepu, S.K.: Zero-Shot Federated Learning with New
Classes for Audio Classification. In: Proc. Interspeech 2021. pp. 1579-
1583 (2021). https://doi.org/10.21437/Interspeech.2021-2264

Hijazi, N.M., et al.: Secure federated learning with fully homomorphic
encryption for iot communications. IEEE Internet of Things Journal
(2023)

Horvitz, E., Mulligan, D.: Data, privacy, and the greater good. Science
349(6245), 253-255 (2015)

Jin, W., et al.: FedML-HE: An efficient homomorphic-encryption-based
privacy-preserving federated learning system. In: International Workshop
on Federated Learning in the Age of Foundation Models in Conjunction
with NeurIPS 2023 (2023)

Johnson, D.S., et al.: Desed-fl and urban-fl: Federated learning datasets
for sound event detection. In: 2021 29th European Signal Processing
Conference (EUSIPCO). pp. 556-560. IEEE (2021)

Li, T, et al.: Federated learning: Challenges, methods, and future
directions. IEEE signal processing magazine 37(3), 50-60 (2020)

Li, T, et al.: Federated optimization in heterogeneous networks. In:
Dhillon, I., Papailiopoulos, D., Sze, V. (eds.) Proceedings of Machine
Learning and Systems. vol. 2, pp. 429-450 (2020)

Ma, J., et al.: Privacy-preserving federated learning based on multi-key
homomorphic encryption. International Journal of Intelligent Systems
37(9), 5880-5901 (2022)

Ma, X., et al.: A state-of-the-art survey on solving non-iid data in
federated learning. Future Gener. Comput. Syst. 135(C), 244-258 (oct
2022). https://doi.org/10.1016/j.future.2022.05.003

McMahan, B., et al.: Communication-efficient learning of deep networks
from decentralized data. In: Artificial intelligence and statistics. pp.
1273-1282. PMLR (2017)
Ntalampiras, S.: Moving
acoustic sensor networks.

vehicle classification using wireless
IEEE Transactions on Emerging

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

(38]

Topics in Computational Intelligence 2(2), 129-138 (2018).
https://doi.org/10.1109/TETC1.2017.2783340

Park, J., Lim, H.: Privacy-preserving federated
homomorphic encryption. Applied Sciences
https://doi.org/10.3390/app12020734

Peng, H., et al.: Fedef: Federated learning for heterogeneous and
class imbalance data. In: 2023 IEEE Symposium on Computers and
Communications (ISCC). pp. 619-624. IEEE (2023)

Rahulamathavan, Y., et al.: Fhefl: Fully homomorphic encryption
friendly privacy-preserving federated learning with byzantine users
(2023)

Sanon, S.P., et al.: Secure federated learning: An evaluation of homomor-
phic encrypted network traffic prediction. In: 2023 IEEE 20th Consumer
Communications & Networking Conference (CCNC). pp. 1-6. IEEE
(2023)

Sattler, F., et al.: Robust and communication-efficient federated learning
from non-iid data. IEEE transactions on neural networks and learning
systems 31(9), 3400-3413 (2019)

Shokri, R., et al.: Membership inference attacks against machine learning
models. In: 2017 IEEE symposium on security and privacy (SP). pp. 3—
18. IEEE (2017)

Turchet, L., et al.: The internet of sounds: Convergent trends, insights,
and future directions. IEEE Internet of Things Journal 10(13), 11264—
11292 (2023). https://doi.org/10.1109/JI0T.2023.3253602

Walskaar, I., et al.: A practical implementation of medical privacy-
preserving federated learning using multi-key homomorphic
encryption and flower framework. Cryptography 7(4) (2023).
https://doi.org/10.3390/cryptography7040048

Wang, K., et al.: Vehicle recognition in acoustic sensor networks
via sparse representation. In: 2014 IEEE International Conference
on Multimedia and Expo Workshops (ICMEW). pp. 1-4 (2014).
https://doi.org/10.1109/ICMEW.2014.6890549

Wibawa, F., et al.. Homomorphic encryption and federated learning
based privacy-preserving cnn training: Covid-19 detection use-case.
In: Proceedings of the 2022 European Interdisciplinary Cybersecurity
Conference. pp. 85-90 (2022)

Yadan, O.: Hydra - a framework for elegantly configuring complex
applications. Github (2019)

Ye, J., et al.: Enhanced membership inference attacks against machine
learning models. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. pp. 3093-3106 (2022)
Zhang, Z., et al.: Semi-supervised federated learning with non-iid data:
Algorithm and system design. In: 2021 IEEE 23rd Int Conf on High
Performance Computing & Communications; 7th Int Conf on Data
Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). pp. 157-164. IEEE (2021)

Zhu, L., et al.: Deep leakage from gradients. Advances in neural
information processing systems 32 (2019)

learning using
12(2) (2022).

