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Abstract—The virtualization of physical acoustic environments,
essential for augmented reality and immersive spatial audio
applications, typically requires the storage and transmission of
a large quantity of room impulse responses (RIRs). Real-world
RIRs often comprise tens of thousands of coefficients. As such,
working with large databases of room acoustic measurements
presents significant challenges in terms of memory and band-
width requirements. To address this issue, we investigate neural
audio codecs as a means to achieve lossy RIR data compression.
In particular, by focusing on two publicly available datasets, we
show that EnCodec, a recently proposed state-of-the-art neural
audio codec with bitrate as low as 1.5 kbps, is able to achieve
a compression ratio over two orders of magnitude larger than
lossless coding. Objective metrics and a listening test reveal that
EnCodec preserves perceptually relevant features of the decoded
reverberation better than a traditional dimensionality reduction
method based on singular value decomposition, encouraging
further research on the topic of neural RIR coding.

Index Terms—auralization, data compression, EnCodec, en-
tropy coding, room acoustics, room impulse response, neural
audio codec

I. INTRODUCTION

Room impulse responses (RIRs) fully characterize the input-
output relationship between an acoustic source and a receiver,
capturing how sound propagates through an enclosed space
and interacts with its boundaries. RIRs are central to many
applications, including room acoustics analysis [1], room
geometry inference [2], audio source separation [3], speech
enhancement [4], and auralization [5].

A single RIR describes a single-input single-output (SISO)
linear time-invariant system. Therefore, practical applications
related to immersive audio and the auralization of navigable
virtual spaces often entail a high spatial resolution of measure-
ment points, i.e., source and receiver placements. Applications
such as gaming and virtual reality, in turn, rely on the high-
fidelity acoustic rendering of a large number of environments
to create an immersive experience [6], and distributed wireless
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acoustic sensor networks [7] have the capacity to gather room
acoustics data over a large area of interest.

At the same time, though, RIRs often consist of tens of
thousands of coefficients at standard audio sampling rates.
This poses considerable challenges when it comes to the
management and storage of large databases of RIRs.

Moreover, when spatial audio processing is not performed
by a centralized processing node but rather takes place on edge
devices [8], RIRs must be transmitted over a telecommunica-
tion network, possibly in real-time. In this scenario, data size
may also become a burden in terms of network bandwidth
and throughput. Ultimately, high memory and network require-
ments create a strong need for effective lossy compression
algorithms capable of reducing the dimensionality of RIRs as
much as possible, all while preserving their acoustic qualities.

In this paper, we explore the application of EnCodec for
large-scale RIR coding. EnCodec [9] is a recently proposed
deep encoder-decoder architecture with latent Residual Vector
Quantization (RVQ) that showed state-of-the-art performance
in high-quality low-bitrate lossy compression of general audio
signals, including speech, music, and environmental sounds,
outperforming traditional digital signal processing based audio
codecs such as Opus [10] and EVS [11].

While neural audio coding is an active and ever-growing
field of research [9], [12]–[23], with some RVQ-based codecs
also being used as building blocks for blind RIR estima-
tion [24], to the best of our knowledge, the literature lacks
a quantitative study of the impact of neural RIR coding on
the perceived reverberation quality in relation to the data
compression ratio.

We evaluate EnCodec against a recent RIR dimensionality
reduction framework based on well-understood modal anal-
ysis principles [25]. To illustrate the methods’ performance,
we focus on two publicly available datasets of real-world
RIRs, i.e., the MIT Acoustical Reverberation Scene Statistics
Survey database [26] and HOMULA-RIR [27]. Perceptually-
informed objective metrics indicate that EnCodec is capable
of preserving temporal and timbral features significantly better
than traditional SVD-based dimensionality reduction, while
reducing the size of the two datasets by over two orders of
magnitude with respect to FLAC encoding. These conclusions
are confirmed by a MUSHRA listening test, suggesting that



neural audio codecs represent a promising avenue of research
for large-scale RIR data compression.

The remainder of the manuscript is organized as follows. In
Section II, we present related work on RIR dimensionality
reduction. In Section III, we focus on recent advances in
neural audio coding. In Section IV, we outline the evaluation
framework. In Section V, we discuss the experimental results.
Finally, Section VI concludes this work.

II. BACKGROUND ON DIMENSIONALITY REDUCTION

When it comes to dimensionality reduction, autoencoders
have been recently explored for compressing short RIR seg-
ments into small-size latent representations [28], [29].

Parametric methods such as artificial reverberators [30] can
represent a low-cost alternative to full-scale convolution-based
auralization [31], and can be regarded as reduced order models
(ROMs) of the corresponding acoustic environments. Unless
specifically optimized [32], [33], though, their low parameter
count comes at the cost of limited controllability and realism.

Other noteworthy model order reduction techniques rely
on modal analysis. Rooted in linear algebra, these methods
exploit singular value decomposition (SVD) as a means to
extract the most prominent physical modes from measurement
data and achieve dimensionality reduction. In this family of
methods, we find, e.g., the well-known Eigensystem Realiza-
tion Algorithm (ERA) [34], that aims to identify a state-space
filter from impulse response data. Likewise, Dynamic Mode
Decomposition (DMD) [35] characterizes measurements as the
superposition of sinusoidal modes, and is able to project high-
dimensional vectors onto low-dimensional representations by
capturing the underlying system’s dynamics.

Adopting the latter approach, Huang et al. recently proposed
an SVD-based RIR dimensionality reduction technique and
explored its application for system identification [25]. In the
following, we provide an overview of the method.

Given an L-sample RIR h[n], we can define the vector

h = [h[0], h[1], ..., h[L− 1]]
T
, (1)

where (·)T denotes the transpose operator. Then, a dataset of
N RIRs can be expressed as the matrix

H =

 h1 h2 · · · hN

 . (2)

In likely case of length mismatch, to avoid truncation errors
when constructing the matrix H, every RIR where L < Lmax
can be padded with trailing zeros, such that H ∈ RLmax×N .

The economy-sized SVD of the data matrix yields

H = UΣVT , (3)

where U is the semi-unitary matrix containing the left sin-
gular vectors of H. We thus define the signature matrix
Q ∈ RLmax×R as the matrix containing the columns of U
associated with the R largest singular values in Σ. As long as
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Fig. 1: EnCodec architecture [9].

R ≪ min{Lmax, N}, dimensionality reduction is achieved by
linearly projecting a RIR onto the column space of Q, i.e.,

z = QTh , (4)

where z ∈ RR is the reduced representation of h ∈ RLmax .
The vector z and the signature matrix Q are then either

stored or transmitted. This way, decoding z amounts to

ĥ = Qz . (5)

Given a dataset of N RIRs of length L ≤ Lmax, the total
number of real-valued coefficients in the reduced dataset is

CR(N) = LmaxR+NR, (6)

which has a sizeable constant part due to the high dimension-
ality of the (dataset-specific) signature matrix, and a relatively
small cost for storing a single RIR, i.e., R coefficients.
Therefore, this approach is better suited for databases so large
as to offset the constant factor LmaxR. Indeed, virtually all
methods inspired by modal analysis require storing auxiliary
data structures which, in the case of [25], have the same
dimensionality of a RIR, i.e., tens of thousands of coefficients.
This approach fundamentally differs from that of neural audio
codecs, which will be discussed in the next section.

III. NEURAL AUDIO CODECS

At its core, an audio codec is a system designed to transform
an audio signal into a compact sequence of discrete codes
which, ideally, contains enough information to reconstruct
the input signal with negligible distortion. A typical audio
codec comprises three modules: an encoder, a quantizer, and
a decoder. The bitrate of the quantized codes is usually much
lower than that of the input signals, such that codeword indices
are stored and transmitted at a lower cost.

While conventional codecs exploit digital signal processing,
psychoacoustics principles, and sound production models,
neural audio codecs [12]–[23] tackle the problem by parame-
terizing the encoder and the decoder as deep neural networks,
and apply vector quantization with learnable codebooks to the
innermost latent representations.

In general terms, a Vector Quantizer (VQ) compares the
encoder output with each codeword stored in a learnable
codebook matrix, and returns the index of the most similar
according to some suitable metric. The decoder, in turn, is



tasked with reconstructing the input signal from the embedding
retrieved from the codebook via table lookup. Such a direct
approach, however, would result in a exceedingly large code-
book when using a single quantizer layer. Pioneered by [13],
residual vector quantization (RVQ) offers an elegant solution,
employing a cascade of smaller VQs that progressively encode
the residual of the preceding stage.

Depicted in Fig. 1, EnCodec [9] features an RVQ with a
variable number of codebooks depending on the target bitrate.
Two main variants of EnCodec exist: a 48 kHz non-causal
model trained with stereophonic music, and a 24 kHz causal
model trained with a variety of monophonic audio signals,
including speech, music, and sound events. In this work, we
focus on the latter for two reasons. First, we limit our study
to SISO RIRs.1 Second, causality is a desirable property as it
enables low-latency data streaming.

The streamable EnCodec model can operate at five bitrates,
i.e., 1.5, 3, 6, 12, 24 kbps, corresponding to 2, 4, 8, 16, 32
codebooks, respectively, each consisting of 1024 codewords. It
implements causal convolutions and frames the input using a
sliding window with a stride of 13 ms. This way, the encoder
produces fr = 75 latent codes per second at fs = 24 kHz.
This means that, using K codebooks, a dataset of N RIRs can
be represented using CK(N) unsigned integer values ranging
from 0 to 1023, where

CK(N) = N ·
(
fr
fs
LK

)
. (7)

It is worth pointing out that, while (6) is expressed in terms
of floating-point numbers, the coefficients here can be repre-
sented with as few as 10 bits each.

On top of that, EnCodec uses a small language model (LM)
to estimate token probabilities and apply range-based entropy
coding (EC) [36]. This further compresses the representation
by up to 40% at the cost of an increased computational load
at encoding time. In the following, we evaluate EnCodec both
with and without LM-based EC.

IV. EVALUATION

As a lossless reference, we consider the total disk space
in kilobytes occupied by each dataset when stored in FLAC.
Moreover, we consider the baseline method presented in [25]
for R = 4, 8, 16, 32, 64, 96, 128. Whereas increasing the
free parameter R may further increase the quality of the
reconstruction, we observed that the memory requirements
already exceeded those of lossless coding. Finally, we evaluate
the causal EnCodec model for all the available bitrates. It
is worth noting that EnCodec was trained on general audio,
and not with RIRs. The main goal here is thus to assess
whether an off-the-shelf neural audio codec can generalize and
achieve satisfactory coding results on unseen room acoustics
measurements.

1It is worth mentioning that binaural room impulse responses (BRIRs) are
inherently stereophonic. The investigation of the non-streamable model for
BRIRs compression is left for future work.

A. Room Impulse Response Datasets

To illustrate the capabilities of the methods under scrutiny,
we consider two datasets: the MIT Acoustical Reverberation
Scene Statistics Survey database [26], or “MIT Survey” for
short, and the recently released HOMULA-RIR [27].

The choice of these datasets is to cover two different
scenarios. First, MIT Survey contains 270 impulse responses
(IRs), both of indoor and outdoor spaces. Since each recording
took place in a different environment, the respective IRs
exhibit a wide range of reverberation times (T60) and are likely
to be little correlated with one another.

Second, HOMULA-RIR comprises multi-channel RIRs ob-
tained for two sources using 25 higher-order microphones
(HOMs) with eight capsules each, as well as a uniform
linear array (ULA) with 64 sensors, totaling 528 SISO RIRs.
Being measured in the same furnished seminar room of the
Politecnico di Milano, Milan, Italy, all RIRs in HOMULA-RIR
are affected by the same room geometry and are characterized
by much more homogeneous recording conditions compared
to those in the MIT Survey dataset.

As a data preprocessing step, we resample and normalize
each RIR in order to avoid level mismatch.

B. Objective Metrics

In recent work [37], [38], the normalized misalignment was
used as a metric to evaluate RIR estimation algorithms

M := 20 log10

(
∥h− ĥ∥2
∥h∥2

)
, (8)

where h is the reference and ĥ is the decoded RIR.
Targeting low-bitrate lossy compression, though, point-wise

errors may not adequately reflect the ability to maintain the
perceptual qualities of the target RIRs. Instead, we use the
normalized EDC misalignment to compare different temporal
behaviors. Furthermore, we assess the spectral coloration of
the compressed and reference RIRs using the normalized
magnitude misalignment.

The Energy Decay Curve (EDC) of an L-sample impulse
response h[n] can be defined through Schroeder’s backward
integration [39]

ε[n] =

L−1∑
τ=n

h2[τ ]. (9)

It is well-understood that the EDC closely relates to the
reverberation time T60, as well as other widespread metrics
such as early decay time, clarity C80, and definition D50 [1].
Thus, we define the normalized EDC misalignment as

MEDC := 20 log10

(
∥ε− ε̂∥2
∥ε∥2

)
, (10)

where ε = [ε[0], ..., ε[L− 1]]T .
Similarly, we define the normalized magnitude misalign-

ment as

Mmag := 20 log10

(∥∥ |H[k]| − |Ĥ[k]|
∥∥
2∥∥ |H[k]|

∥∥
2

)
, (11)



Fig. 2: MIT Acoustical Reverberation Scene Statistics
Survey: Normalized EDC misalignment as a function of the
required disk space. The x-axis is in logarithmic scale.

Fig. 3: HOMULA-RIR: Normalized EDC misalignment as a
function of the required disk space. The x-axis is in logarith-
mic scale.

where |H[k]| and |Ĥ[k]| are the magnitude of the Fast Fourier
Transform (FFT) of h[n] and ĥ[n], respectively.

The perceptual relevance of the metrics presented above is
confirmed by the listening test detailed in the next section.

C. Listening Test

We conducted a Multiple Stimuli with Hidden Reference
and Anchor (MUSHRA) test where six anechoic signals (two
male speech, two female speech, and two music signals) were
convolved with RIRs at different compression levels.

The speech signals were taken from VCTK [40], while the
music signals (sax and cello) came from AVAD-VR [41]. In a
DAW, we stitched together different utterances from the same
speaker and manually extracted a complete musical phrase

Fig. 4: MIT Acoustical Reverberation Scene Statistics
Survey: Normalized magnitude misalignment as a function
of the required disk space. The x-axis is in logarithmic scale.

Fig. 5: HOMULA-RIR: Normalized magnitude misalignment
as a function of the required disk space. The x-axis is in
logarithmic scale.

from each music clip. This resulted in audio files with duration
ranging from 15 to 18 seconds,

For each file, we randomly selected a RIR from either
dataset, such that one male speech, one female speech, and
one music signal were associated with RIRs from MIT Sur-
vey, while the remaining ones were paired with RIRs from
HOMULA-RIR. The pairings are reported in Table I.

The test was conducted using webMUSHRA [42], a Web
Audio API-based software compliant to the ITU-R Rec.
BS.1534 [43]. References were obtained by convolving the
audio signals with the uncompressed RIRs, whereas clean,
non-reverberant clips were used as anchors. After an initial
training page, participants were tasked to rate the similarity of
each item with the reference on a scale of 0 to 100. On each



Stimulus VCTK speaker ID AVAD-VR ID MIT Survey ID HOMULA-RIR ID T60 [s]

1 p300 – h060_Office_ConferenceRoom_3txts – 1.42
2 p227 – h001_Bedroom_65txts – 0.43
3 – DontMeanAthing_Sax h052_Gym_WeightRoom_3txts – 1.22
4 p225 – – rir-S1-R1-HOM1 (0) 0.83
5 p292 – – rir-S2-R2-HOM4 (1) 0.91
6 – Canon_Cello – rir-S1-R3-HOM2 (2) 0.92

TABLE I: Signal-RIR pairings of all MUSHRA test stimuli.

Fig. 6: MIT Acoustical Reverberation Scene Statistics Sur-
vey: Room impulse responses (h002_Bedroom_62txts).

page, ten conditions were assessed, including the hidden refer-
ence and anchor; we evaluate EnCodec at all bitrates (1.5, 3, 6,
12, 24 kbps), as well as the baseline with R ∈ {4, 8, 16}, i.e.,
configurations in which the compression ratio was significantly
larger than FLAC. The loudness of each file was normalized
to −24 LUFS according to ITU-R Rec. BS.1770-4 [44] using
pyloudnorm [45]. Volume adjustments were allowed during
the training phase. Then, subjects were asked to keep the level
constant for the duration of the test. A total of 14 participants
took part in the experiment, with age ranging from 25 to 38,
none of whom reported hearing impairments. According to the
post-screening guidelines [43], one subject was excluded. The
remaining participants were students or members of the Image
and Sound Processing Lab (ISPL) at Politecnico di Milano,
and had previous experience with MUSHRA tests.

V. RESULTS AND DISCUSSION

A. Objective Evaluation

Fig. 2 and Fig. 3 show the normalized EDC misalignment
as a function of the memory required to store MIT Survey and
HOMULA-RIR, respectively. Fig. 4 and Fig. 5, in turn, depict
the normalized magnitude misalignment.

EnCodec with LM-based EC achieves the highest compres-
sion gain, with a memory footprint two orders of magni-
tude smaller than FLAC. Comparatively, whereas the baseline
method can sometimes achieve better metrics than EnCodec,

Fig. 7: HOMULA-RIR: Room impulse responses
(S1-R5-HOM5).

this happens only for data sizes that either approach or
exceed the threshold for lossless compression, i.e., failing to
provide any substantial saving. Overall, EnCodec is shown
to outperform the baseline method by over 15 dB in terms
of MEDC, and by more than 3 dB in terms of Mmag. This
suggests that EnCodec is better suited for encoding temporal
and spectral features despite the higher compression gain.

This is also noticeable in the RIRs depicted in Fig. 6 and
Fig. 7. In these examples, we compare the baseline method
with R = 4 and R = 32 (in blue), and EnCodec with a
bitrate of 1.5 and 24 kbps (in orange). In both Fig. 6 and
Fig. 7, EnCodec appears able to match the target RIRs more
closely than the baseline, which is instead characterized by a
steep energy decay. Additionally, Fig. 7 also shows that the
baseline method can sometimes produce pre-ringing artifacts
on HOMULA-RIR data, while EnCodec does a better job at
preserving the temporal location of the onset.

B. Subjective Evaluation

The outcomes of the MUSHRA test appear to validate the
conclusions drawn in the previous section.

In Fig. 8 and Fig. 9, each box represents the interquartile
range (IQR) which spans from the first quartile (Q1) to the
third quartile (Q3). The line inside the boxes marks the median
score. The whiskers extend from Q1 and Q3 to the smallest
and largest values within 1.5 times the IQR, indicating the



(a) Female speech (p300) in a conference room
(h060_Office_ConferenceRoom_3txts).

(b) Male speech (p227) in a bedroom
(h001_Bedroom_65txts).

(c) Sax (DontMeanAthing) in a weight room
(h052_Gym_WeightRoom_3txts).

Fig. 8: MIT Acoustical Reverberation Scene Statistics Survey: MUSHRA test results.

(a) Female speech (p225) with the first capsule
of rir-S1-R1-HOM1.

(b) Male speech (p292) with the second cap-
sule of rir-S2-R2-HOM4.

(c) Cello (Canon) with the third capsule of
rir-S1-R3-HOM2

Fig. 9: HOMULA-RIR: MUSHRA test results.

range of the bulk of the data. Any rating scores outside the
whiskers are considered outliers and plotted separately.

In all six cases, the baseline method received the lowest
ratings, whereas most EnCodec variants showcase whiskers
approaching 100, suggesting that several participants could not
detect any significant difference between the test conditions
and the reference. This aligns with the fact that the hidden
reference was not consistently identified, resulting in a broader
rating distribution for five out of six reference signals.

Overall, little to no dependency on reverberation time was
observed. In fact, the ratings in Fig. 8a, corresponding to the
longest RIR (T60 ≈ 1.42), follow a trend similar to those in
Fig. 8b, which instead pertains to the shortest RIR of the six
(T60 ≈ 0.43). The latter, however, exhibit a larger spread.

In summary, EnCodec variants operating at 3, 6, 12, and 24
kbps show a comparable perceptual performance, with average
ratings of 75.8, 75.9, 78.6, and 78.8, respectively. However,
a noticeable drop is observed for the 1.5 kbps model, which

received an average score of 62.3. Meanwhile, the baseline
method achieved average ratings of 45.2, 42.3, and 37.0 for
R = 16, 8, and 4, respectively. This reveals that, on average,
the neural audio codec outperforms SVD-based dimensionality
reduction by over 30 points.

VI. CONCLUSIONS

In this paper, we examined the application of EnCodec, a
general-purpose pretrained RVQ-based neural audio codec, for
compressing large-scale datasets of RIRs. Our analysis, both
objective and subjective, demonstrates that EnCodec is effec-
tive for very low-bitrate lossy compression. It significantly
reduces data size while maintaining the perceptual qualities
of the RIRs, enabling more manageable storage and efficient
transmission of large room acoustics datasets. While this work
indicates off-the-shelf neural audio codecs as a viable strategy
to achieve low data rate realistic-sounding reverberation, future
work will investigate their ability to encode spatial cues, such



as sound directivity, diffuseness, and spatial coherence. Future
research could thus explore the effectiveness of space-time
processing using encoded RIRs. This includes applications
such as auralization, sound source localization, and room
geometry inference.
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