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Abstract—New perspectives in correlating physical and 
perceptual characteristics of musical instruments have emerged 
through recent advancements in machine learning and high-
performance computing. Driving such correlating processes, for 
instance through training deep learning models, requires the 
assembly of large audio datasets and the development of tools 
for Exploratory Data Analysis (EDA). This article presents 
AudioInsight, a web application for the audio-visual exploration 
of sound datasets for musical acoustics. This application is a by-
product of our research on drumhead acoustics, which aims at 
the computational inference of damping strategies resulting in a 
desired sound texture. Developed in Python and Dash-Plotly, 
AudioInsight features an interactive and responsive user 
interface providing tools for dataset exploration, statistical 
analysis and visualization of parameter distributions and 
relevant correlations. Moreover, AudioInsight permits 
generating dataset clusters and exploring sounds by 
interactively navigating within their 2D or 3D graphic 
representations. Future enhancements of this application, 
allowing musicians and researchers to contribute to musical 
instrument datasets through crowdsourcing, may serve as an 
example application within the Internet of Sounds (IoS) 
ecosystem.  

Keywords—musical acoustics, drumhead acoustics, 
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I. INTRODUCTION 
State-of-the-art AI-driven techniques have enhanced the 

ability to process and interpret large datasets of acoustic 
signals, providing new insights into the physical and 
perceptual aspects of musical instruments. Such 
methodologies not only broaden the scope of research in 
musical acoustics but also foster the development of highly 
novel applications involving collaborative exchanges across 
different research domains. 

Research endeavors in this direction have highlighted the 
need for large and high-quality sound datasets. These datasets 
are essential for applications such as estimating physical 
characteristics from sound and training advanced deep 
learning models for sound source recognition. Ensuring the 
validity of these datasets, not only in terms of sound quality 
but maybe more importantly in terms of their descriptive 
annotations associating physical and perceptual traits, requires 
the development of tools for Exploratory Data Analysis 
(EDA). A significant challenge in this direction relates to 
finding appropriately annotated audio segments, which are 
crucial for training effective machine learning models for the 
task at hand. While large collections of audio data are 
currently available, finding datasets with accurate and 
comprehensive annotations, linking physical properties to 
perceptual characteristics is highly cumbersome. This 

challenge is intensified by the abundance of data and the 
nuanced nature of sound annotations, which often require 
human curation and expert knowledge to be accurate and 
useful. Therefore, tools assisting researchers to process and 
analyze large datasets, as well as to ensure the quality and 
relevance of accompanying annotations, are of fundamental 
importance. 

The concept of the Internet of Sounds (IoS) emerges as a 
relevant framework in this context [1]. Besides environmental 
acoustics, sensor networks, and smart musical instruments, 
IoS can contribute to musical instruments studies by 
integrating diverse sound databases, making it possible to 
access and utilize a wide range of sound samples and related 
data from different sources, including musicians cell phones. 
This interconnected framework can support more 
comprehensive and multifaceted studies in musical acoustics, 
providing researchers with a richer set of data and tools to 
work with. 

The AudioInsight application presented in this article was 
developed to address our research requirements with respect 
to the exploration of sound datasets for drumhead acoustics. 
At present, the application leverages a dataset of over 11,000 
synthetic drumhead sounds generated through Finite 
Difference Time Domain (FDTD) synthesis [2]. The tools 
provided by the AudioInsight application allow visualizing 
and analyzing sound data, facilitating a deeper understanding 
and helping researchers and musicians to identify interesting 
sounds, patterns and correlations that might be overlooked by 
conventional analysis methods. 

The rest of this article is structured as follows: Section II 
discusses similar applications for EDA in different research 
domains, highlighting their strengths and limitations. Then, 
section III presents our motivation driving the development of 
the AudioInsight application for drumhead acoustics. It 
discusses the requirements of analyzing large-scale audio data 
and the limitations of conventional methods to do so. Section 
IV elaborates on the design and the functionality of the 
application and section V provides implementation details. 
Finally, the article discusses future perspectives and 
summarizes key contributions of our research. 

II. RELATED WORK 

A. EDA for large datasets 
EDA is a fundamental methodology in data science, 

introduced by Tukey [3], designed for summarizing, 
visualizing, and understanding complex datasets. The primary 
objective of EDA is to uncover underlying patterns, spot 
anomalies, test hypotheses, and check assumptions through 
graphical representations and robust statistical approaches in 
order to understand data [4].  



EDA is widely recognized for its critical role in various 
fields, including musical acoustics. Techniques such as data 
visualization, including histograms and scatter plots, 
statistical summaries and dimensionality reduction are 
commonly employed in EDA to gain insight to large, 
multidimensional audio datasets. Large datasets often contain 
complex structures and relationships that can be difficult to 
understand without exploratory techniques. By summarizing 
key aspects of the data visually and statistically, EDA helps 
analysts to efficiently uncover trends and correlations that 
otherwise might be missed [5], [6], [7].       

B. EDA Tools and Applications 
Numerous tools have been developed to support EDA 

across various fields, each addressing the unique needs of 
different types of data and analysis workflows. Specialized 
platforms have been developed to handle domain-specific data 
in the fields of environmental  research [8], weather 
forecasting [9], seismic research [10], economics [11], and 
medical research [12], [13].  

In data science, the rise of computational notebooks such 
as JupyterLab 1  and RStudio 2  has revolutionized how 
researchers conduct EDA [14]. By integrating code, 
documentation, and outputs within a single environment, 
library packages such as Matplotlib, Plotly, Seaborn, 
Tidyverse, Pandas, and Scikit-learn offer robust capabilities 
for data manipulation, visualization, and machine learning 
experimentation. Similarly, EDAssistant [15] integrates 
computational notebooks to provide in-situ code search and 
recommendation, thus enhancing the capabilities offered for 
data exploration. In the domain of big data, platforms like 
Apache Spark and Hadoop [16] provide distributed computing 
solutions for processing vast datasets. However, these 
frameworks require programming skills and specialized 
knowledge to explore any type of data. 

Higher level visualization-centric tools such as Tableau 
[17], and PowerBI3 are favored for their intuitive interfaces 
and powerful data visualization capabilities, facilitating 
complex charts and dashboards interactively. Additionally, 
frameworks like Streamlit 4 , Dash 5, and Panel 6  enable the 
development of interactive web-based applications for EDA. 
In terms of programmatic approaches,  Vega-Lite [18] offers 
a high-level grammar for creating interactive graphics, while 
the Voyager browser [19], provides a gallery of automatically 
generated visualizations. Furthermore, recent EDA tools such 
as Pandas Profiling7, generate interactive HTML reports to 
summarize dataset statistics and visualizations.  

When it comes to audio datasets, their data exploration and 
analysis presents unique challenges due to high 
dimensionality and temporal substance of audio data. There 
are several tools for analyzing and annotating single audio 
files, such as standalone software (e.g. Audacity, Sonic 
Visualiser [20], Praat) and Python libraries (e.g. Librosa [21], 
Essentia [22]). 

 
1 https://jupyter.org/  
2 https://posit.co/products/open-source/rstudio/  
3 https://www.microsoft.com/en-us/power-platform/products/power-bi/ 
4 https://streamlit.io/ 
5 https://dash.plotly.com/ 
6 https://panel.holoviz.org/ 
7 https://pandas-profiling.github.io/pandas-profiling/ 
8 https://github.com/man-group/dtale/  

Web-based applications like D-Tale 8  provide an 
interactive interface for visualizing and exploring pandas 
dataframes. The TensorFlow Projector 9  and Dash-based 
applications, like t-SNE Explorer10 and Clustergram11stand 
out as powerful platforms for visualizing high-dimensional 
data, facilitating the discovery of patterns and clusters. 
Additionally, the Speech Data Explorer developed by 
NVIDIA [23], also a Dash-based application, offers 
interactive exploration of automatic speech recognition and 
text-to-speech datasets, focusing on global statistics and error 
analysis. Finally, Google Creative Lab offers web-based 
interactive experiments for exploring audio in the context of 
different domains. For example, projects like Drum-
Machine12 leverage  the t-SNE algorithm for sound clustering. 
Spectrogram-and-Oscillator 13  and Bird-Sounds 14  provide 
interactive experiences through FFT spectrum analysis and 
audio-visual integration.  

 Data-driven approaches like Data2Vis [24], DeepEye 
[25] and VizML [26] automatically generate and recommend 
visualizations based on deep learning techniques. Similarly, 
ATENA [27], a system that auto-generates EDA notebooks 
using deep reinforcement learning, demonstrates the potential 
for automation in EDA processes. Researchers like Heise and 
Bear have employed unsupervised methods to reveal natural 
clustering patterns in audio data [28]. Lastly, Fallgren [29] 
presented tools supporting nonsequential browsing and data 
interpretation for exploring large amounts of audio data.  

Despite the continuous evolution of EDA tools, there are 
no comprehensive platforms specifically designed for the 
exploration of large-scale audio datasets. Existing 
applications often focus either on general analysis for 
structured datasets or on specific audio processing tasks of 
individual audio files. They rarely provide a user interface 
suitable for the multifaceted nature of audio data, without 
requiring significant coding expertise. This situation 
underscores the importance of developing applications like 
AudioInsight, which aims to provide a unified platform for 
EDA of audio datasets. 

III. MOTIVATION: DRUMHEAD ACOUSTICS 
The development of the AudioInsight application emerged 

from our research on drumhead acoustics [30], [31].  
The objective of this study was to computationally infer the 
damping material that needs to be applied on the surface of  
a membrane to achieve a given sound texture. This inverse 
acoustic problem presented unique challenges, particularly in 
handling and exploring vast amounts of data. AudioInsight 
was conceived as a solution to these challenges, to provide a 
versatile visual and auditory exploration tool, capable of 
depicting complex relationships between physical properties 
and sound characteristics of drumheads. In the following, we 
briefly review this study to explicitly outline the challenges 
encountered during our research and to showcase an example 
demonstrating the capabilities of the application.  

9 https://projector.tensorflow.org/ 
10 https://dash.gallery/dash-tsne/  
11 https://dash.gallery/dash-clustergram/ 
12 https://experiments.withgoogle.com/drum-machine/  
13 https://experiments.withgoogle.com/chrome/spectrogram-and-

oscillator/ 
14 https://experiments.withgoogle.com/ai/bird-sounds/view/ 



A. Methodology 
The drumhead dataset comprises 11,114 synthetic 

drumhead sounds, which were generated using a FDTD 
algorithm modelling the behavior of a vibrating circular 
membrane. The model assumes the distribution of malleable, 
paste-like material on the surface of the membrane, which 
alters its vibrational behavior, its modal frequencies, and thus 
the sound it generates. Paste distribution was varied according 
to six patterns that were inspired by handcrafted and 
commercial drum dampeners that are commonly used by 
percussionists. These patterns are shown on Fig. 1. Different 
sounds were generated by varying the area covered by paste 
in each pattern (e.g. by varying the width of the lines), the 
amount of paste mass per unit area as well as the strike 
position of membrane excitation. Three points were chosen as 
strike positions: one near the center, one near the perimeter 
and one in between. The wide range of parameters and their 
variations resulted in a set of sounds that reflects the complex 
interactions between damping materials, membrane 
properties, and excitation positions, making it suitable for 
exploratory analysis and machine learning tasks. 

To explore whether similar damping schemes would result 
in similar sounds, several clustering methods (PCA, t-SNE, 
LDA, and more) were employed. Clustering methods allow 
visualizing high-dimensional data in lower-dimensional 
spaces (i.e. 2D, 3D), thus permitting the identification of 
distinct sound clusters grouping similar sounds together and 
providing insight into the influence of paste patterns and 
impact points on the resulting sound signals. For example,  
Fig. 2, presents two 2D projections of the audio dataset. Each 
point represents a different sound signal and each color depicts 
a different damping pattern. Here the axes X, Y represent to 
one of the possible 2D planes of the multidimensional data, 
chosen by the clustering algorithm to more effectively depict 
groups of similarities among the sound signals. 

In our original research, data exploration was used to guide 
our efforts towards an  inverse acoustic problem, namely to 
infer the damping strategy corresponding to a desired sound. 
This problem was approached by training a two-output 
Convolutional Neural Network (CNN) performing pattern 
identification through a classification branch and estimation 
of the amount of added paste through a regression branch. The 
CNN model demonstrated remarkable accuracy in identifying 
damping configurations from sound input [30], thus 
confirming the capability of data-driven approaches to address 
problems of musical acoustics. 

B. Data Exploration Challenges 
As our research progressed, we encountered significant 

challenges in exploring and analyzing the dataset. As the 
dataset grew to over 11,000 samples, the complexity of the 
analysis increased dramatically. Navigating through 
thousands of audio files can be overwhelming and time-
consuming, making it difficult to gain a systematic overview 
of the data at hand. Conventional methods of audio analysis 
that work well for small samples, become impractical, 
inefficient, and prone to human error when applied to datasets 
of this size. While comparing two sounds might be 
straightforward, scaling this comparison to thousands of 
sounds can lead to fatigue, making it easy to overlook critical 
patterns and relationships. 

This challenge was intensified by the fact that each sound 
sample was associated with numerous parameters defining 

physical properties, i.e. damping variables for paste patterns, 
strike points and relevant perceptual features, e.g. frequency 
content, amplitude envelopes, etc. When dealing with such 
high parameter spaces it is very likely that certain value ranges 
are under-represented for parameters that need to be 
accurately estimated through regression. Moreover, subtle 
patterns and correlations between different parameters and 
sound characteristics are hard to identify. Conventional 2D 
plots and charts are often insufficient to capture these complex 

 
Fig. 1. The paste patterns used for generating the dataset of drumhead 

sounds. 

 
Fig. 2. 2D clustering plots obtained by applying LDA (top) and PCA 

(bottom) algorithms. Different colors correspond to different paste 
pattern cases. Each point on the plot represents a different sound 
from the 11,114 synthetic drumhead sounds. 



non-linear relationships. The effect of paste patterns on sound 
characteristics, for example, was not easy to deduce, making 
it challenging to predict or understand the acoustic results of 
specific damping configurations without thorough analysis.  

To address these challenges, AudioInsight was developed 
as a demo application focusing on drumheads. Through its 
interactive visualizations and clustering capabilities, the 
application allowed us to uncover complex, non-linear 
relationships between physical properties and perceptual 
features that might otherwise remain hidden. These insights 
not only advanced our research objectives but also 
demonstrated the potential of AudioInsight as a powerful tool 
for systematic EDA of large audio datasets in musical 
acoustics. 

IV. THE AUDIOINSIGHT APPLICATION 
The AudioInsight application is available online 15 . Its 

design goals center around providing a powerful, yet easy-to-
use, interactive system for thorough data exploration and 
analysis, accessible to researchers, instrument manufacturers 
and musicians. The visual and audio analysis, along with tools 
for clustering representations, audio previews, and feature 
graphs, help users uncover patterns and correlations that are 
not obvious through regular methods and can be particularly 
valuable for machine learning tasks.  

For instrument manufacturers and musicians, 
AudioInsight may guide the instrument design and tuning 
process, while providing a tool to better understand the 
acoustic properties of their instruments. It allows musicians 
and luthiers to search for similar sounds, explore relationships 
between their timbral discrepancies and to systematically 
enhance their tacit knowledge.  

The user interface of the application is organized in six 
pages. Except from a home page that highlights key features 
of our research, the other pages present the dataset according 
to selected descriptive parameters. The pages offer dropdown 

 
15 http://musicolab.hmu.gr:8050 

menus for users to select their desired dataset and choose 
specific columns (parameters) for analysis. For categorical 
parameters, which in the case of membranes are the paste 
patterns (Fig. 3) and the strike positions, the graphical 
representations may be filtered to display data distributions of 
specific labels. This functionality is provided through 
checkboxes. For continuous variables, e.g. mass of added 
paste, fundamental frequency (f0) of the sounds, etc., scaling, 
zooming and panning of the graphs may be used to focus on 
certain value ranges. 

The functionality of these pages is briefly described in the 
following subsections. 

A. Dataset Page 
The Datasets page (Fig. 3) presents an interactive table of 

the dataset contents, with options to filter and customize the 
display. Rows correspond to dataset instances, i.e. sound files 
and columns to descriptive parameters, in this case physical 
parameters describing the membrane and the damping 
material, the strike position on the membrane, etc. The table 
uses data pagination and allows users to show/hide specific 
columns, sort, filter, search for specific parameter values and 
more.  

Clicking on a row triggers audio playback of the 
corresponding sound file and displays its corresponding 
drumhead grid image, which visually represents the paste 
pattern applied to the drumhead, appearing below the table on 
Fig. 3. The right-side panel presents a description of the 
dataset and provides detailed information about the data being 
explored. 

B. Distributions Page 
The Distributions page (Fig. 4) helps users visualize and 

analyze the statistical distributions of various parameters 
within the sound dataset. The page allows selecting some 
parameter and displaying its distribution either across the 
entire dataset or by filtering out certain labels (categorical 

 
Fig. 3. Dataset page. The interactive table of the dataset contents, with customization options. 

 



parameters). For example, the graph on Fig. 4 displays the 
distribution (probability density) of paste mass, when paste is 
distributed using circular patterns i.e., ring and disc. Hovering 
over the plot displays the y-axis value and the range of x-axis 
values represented by each bar of the histogram. Users can 
customize the appearance of the plots through scaling, 
zooming, and panning, and they can also save the plot as an 
image to disk.  

The right-side panel provides context about the parameter 
being visualized, including its calculation formula and 
statistical metrics like minimum, maximum, median, 
standard deviation, etc. This statistical summary allows 

researchers to identify patterns, trends, and assess whether the 
dataset is balanced with respect to different parameters, hence 
allowing to weigh the suitability of data for the task under 
investigation. 

C. Correlations Page 
The Correlations page (Fig. 5) provides tools for exploring 

and visualizing relationships between pairs of parameters in 
the sound dataset. It features an interactive scatter plot, 
complemented by a range of customization options. Users are 
presented with dropdown menus allowing to select the 
parameters represented on x-axis, and y-axis, along with 
checkboxes for filtering out certain values of categorical data.  

 
Fig. 5. Correlations page. The correlation plot between the extra mass from paste application and f0 of the sounds. Each color from the colormap represents 

a different paste pattern case. Histograms of the both variables are also shown, with mouse hover information corresponding to each point on the 
plots. 

 

 
Fig. 4. Distributions Page. The distribution (probability density) of paste mass for the circular patterns ring and disc and a statistical summary appearing on 

the right. 



The plot updates in real-time, allowing for instantaneous 
visualization of correlations. Additional features include a 
Kernel Density Estimation (KDE) line, histograms along the 
axes, and colormaps based on a third parameter, enhancing the 
depth of analysis. Users can also toggle a heatmap view for 
density visualization.  

For example, Figure 5 illustrates a correlation plot 
showing how the additional mass applied via paste relates to 
the fundamental frequency (f0) of the resulting sound. Each 
paste pattern case is distinguished by a different color on the 
plot. Additionally, histograms depicting the distributions of 
both variables are provided, above and to the right of the 
scatter plot.  

This diagram allows making various hypotheses on how 
increasing the mass of the membrane alters its perceived pitch. 
First, it makes apparent that small variations of the amount of 
added paste in the same pattern does not change the value of 
f0. This may either indicate some precision error of the FDTD 
algorithm used to generate the sounds or suggest a hypothesis 
that needs to be physically and perceptually tested. 

Furthermore, and according to this diagram, different 
patterns result in different f0/mass correlations. For most 
patterns, besides (point) yellow and orange (ring), increasing 
membrane mass via paste will linearly (i.e. by the same 
amount) decrease f0, and hence the observed pitch. For paste 
patterns point and ring there is no such relation, as the same 
mass may result in different f0 values, indicating that the f0 
may be determined either by the strike position or the surface 
area covered with paste or that there is some error in parameter 
assignment or sound generation. There are numerous 
additional hypotheses that may be driven by the graphs of Fig. 
5, which however are beyond the scope of this article. 

Again, the plot supports zoom, pan, and hover functions to 
display detailed information about individual data points, such 
as values of the x and y axes, the number of files 
corresponding to each point on the plot, and paste pattern 
cases. Finally, there is a counter at the bottom of the page that 
indicates the number of observations (i.e. sound files) being 
displayed. 

D. Clusters Page 
The Clusters page (Fig. 6) provides a tool for audiovisual 

navigation within the dataset by using advanced clustering 
techniques. It features a central plot showing the data points 
resulting from the applied clustering method on the input data 
set. Literally applied on the raw values of wav audio data. The 
clustering plot can be viewed in 2D or 3D rendering. The 
following clustering methods are currently supported: 
Principal Component Analysis (PCA) [32], t-Distributed 
Stochastic Neighbor Embedding (t-SNE) [33], [34], Pairwise 
Controlled Manifold Approximation (PaCMAP) [35], 
Uniform Manifold Approximation and Projection (UMAP) 
[36] and Linear Discriminant Analysis (LDA) [37]. Users can 
specify the number of files to be previewed and filtered 
according to categorical data.  

The plot is fully interactive, allowing users to zoom, 
rotate, and pan, as well as save a view of the plot as an image 
to disk. Hovering over data points on the plot triggers real-
time audio playback of the corresponding sound file, 
providing an auditory dimension to the visual exploration. A 
right-side panel displays details about the parameters of each 
sound file. Information concerning the utilized clustering 
method, as well as details about the input dataset are 
additionally provided.  

The Clusters Page is designed to combine visual, 
auditory, and textual information, thus suggesting a 
multisensory approach to data exploration. 

 
Fig. 6. Clusters page. Points represent sounds. Hovering on different points triggers playback and display of descriptive parameters. 

 



E. Analysis Page 
The Analysis page (Fig. 7) is designed as a 

comprehensive tool for real-time sound analysis and digital 
signal processing. It combines a visualization of data clusters 
with a set of spectral  analysis graphs. The page is split into 
two sections: a clustering plot area on the left and an analysis 
panel on the right.  

Similarly to the Clusters page, the interactive clustering 
plot allows for audio playback, while simultaneously 
performing audio analysis of the corresponding sound file. 
The analysis panel displays the sound waveform, its Short 
Term Fourier Transform (STFT) spectrogram and a phase-
space portrait visualization that update in real-time as users 
explore different data points on the cluster area. Additionally, 
the analysis panel features a sound overtone visualization i.e. 
an FFT spectrum overlaid by peak information, attained via a 
peak-picking algorithm, as well as an MFCC spectrogram.  
These visualizations are generated offline, i.e.  prior to 
loading the dataset to the application.  

V. IMPLEMENTATION OF AUDIOINSIGHT 

AudioInsight is currently available online without any 
restrictions related to user authentication. It uses Python as 
the core programming language and the Dash framework for 
web development, granting the creation of a responsive web 
application designed to efficiently handle large audio 
datasets, while providing a smooth, interactive user 
experience.  

 
16 https://palletsprojects.com/p/flask/ 
17 https://react.dev/ 

The backend of the application is responsible for data 
management, audio processing, and data clustering. The 
frontend is organized into multiple responsive pages, each 
dedicated to a specific aspect of EDA. Throughout the 
application, integrated interactive elements such as hover-
over audio playback and data filtering significantly enhances 
the experience of the users in exploring the dataset and 
identifying potential problems. 

A. Dash Framework and Web Development 

The Dash framework, developed by Plotly, is an open-
source framework specifically designed for building 
analytical web applications in Python. The architecture of 
Dash is built on a client-server model, where the server-side 
component communicates with the client via JSON packets 
allowing dynamic updates and interactivity. The server uses 
Flask16, a lightweight Web Server Gateway Interface (WSGI) 
framework, to handle incoming HTTP requests and 
responses, manage URL routing, and provide the necessary 
functionality to serve web pages. 

On the client side, Dash uses React.js 17 , a popular 
JavaScript library for building user interfaces, particularly 
suited to dynamic web applications. For rendering graphs and 
visualizations, Dash employs Plotly.js 18, which is a high-
level, interactive visualization library. This combination lets 
Dash create fast, interactive visualizations that can be easily 
customized and extended. Besides a variety of Plotly 
visualizations, Dash provides support for Pandas dataframes 
and the ability to create custom interactive components.  
It also includes a big collection of pre-made components 

18 https://github.com/plotly/plotly.js 

 
Fig. 7. Analysis Page. t-SNE clustering plot area showing the diameter, radius and cross paste patterns points (left section), along with an offline and real-

time audio analysis panel (right section). 

 



(Dash Core and HTML Components) for building user 
interfaces and rendering HTML in Python. 

AudioInsight leverages these Dash features to create a 
responsive and interactive user interface. Dash Bootstrap 
Components and CSS are used to ensure a responsive layout, 
capable of adjusting to different screen sizes. Each page is 
implemented as a separate Dash callback, enabling easier 
maintenance through a modular development approach. 
These callbacks handle user interactions and data flow 
between the frontend and backend of the application.  

This modular design, which uses separate Python files for 
each page, and additional modules for audio feature 
extraction, plot generation and data processing, ensures easy 
maintenance and scalability. Furthermore, it allows for 
extending the capabilities of the application to handle sound 
datasets that are both generic and tailored to specific 
problems of musical acoustics. 

B. Data Management and Audio Processing 

AudioInsight manages its data by efficiently storing and 
retrieving audio files and related information. This is 
achieved using the Pandas library for data manipulation and 
analysis, with a combination of file system storage for the 
audio files and a curated (labeled) dataset for quick access to 
metadata and pre-computed features. To increase the 
response time of the page, the lru_cache decorator from 
functools19 is used to optimize performance by caching the 
results of expensive function calls, particularly when loading 
and processing data. 

In terms of audio processing, AudioInsight uses Scipy, 
NumPy and Librosa libraries. These modules handle tasks 
like audio loading, processing and analyzing data, audio 
feature extraction, and computations for plot generation.  
To create data visualizations, like scatter plots and histograms 
in 2D and 3D spaces, the Plotly library is extensively used.  
It integrates seamlessly with Dash, enabling the creation of 
dynamic and interactive charts. Clustering algorithms from 
Scikit-Learn, including PCA, t-SNE, and LDA, as well as 
modules for PaCMAP and UMAP algorithms, are 
implemented to provide various trajectories on the dataset 
structure, and further enhance the analytical capabilities of 
the application. 

C. Status and future perspectives 

Currently, the application provides EDA capabilities for 
our drumhead dataset [30]. However, from the early stages  
of development and in alignment with our ongoing research 
in data-driven musical acoustics, it was designed to be 
extendable to support additional sound datasets without the 
need to re-engineer the exploratory functionalities. The goal 
is to make it easy to load new sound datasets with minimal 
effort and without requiring coding expertise. We are 
currently in the process of additionally accommodating  
a dataset of over 200,000 cymbal sounds from well-known 
cymbal manufacturers. During this process, we are 
developing a protocol allowing to define data hierarchies and 
parameter mappings through JSON files.  This future 
integration could lead to the creation of a universal 

 
19 https://docs.python.org/3/library/functools.html 

classification system based on measurable sound 
characteristics, untainted by personal biases and 
misinterpretations.  

A further extension of the AudioInsight application 
focuses on providing functionalities for extending audio 
datasets through crowdsourcing and making them available 
to musicians and musical instrument manufacturers through 
dedicated user interfaces. Moreover, the AudioInsight may 
serve as an example for sound texture exploration and 
development of Smart Musical Instruments (SMIs) [38].  
By leveraging the embedded intelligence and sensor data of 
SMIs, AudioInsight can support real-time crowdsourcing, 
facilitating the expansion of audio datasets in ways not 
possible with acoustic instruments. This collaborative 
approach, combined with principles for guiding the design of 
SMIs, enables the creation of an interoperable ecosystem 
where musicians, developers, and manufacturers can work 
together, enhancing both the scope of the datasets and the 
overall musical experience. 

VI. DISCUSSION AND CONCLUSIONS 

AudioInsight presents an example of a web application 
aiding research in data-driven musical acoustics.  
Its development was motivated by our research activities on 
an inverse acoustic problem, that of computationally 
inferring how to damp or tune a membrane to produce  
a desired sound texture. Such computational problems 
require large amounts of data that are difficult to handle and 
challenging to assess in terms of accuracy, adequacy and 
balance to effectively address the required task. 

The article does not present any user evaluation other  
than our own experience to address our research challenges 
for data exploration. Through the automatic rendering  
of histograms for parameter distributions, scatter plots  
for parameter correlations and interactive clustering 
visualizations, the current version of the application allowed 
gaining a deeper understanding of our data by: a) revealing 
areas in which data was sparse, congested,  
or inaccurate, and b) uncovering complex, non-linear 
relationships between physical properties and perceptual 
features that might otherwise remain hidden within the 
dataset. By (a) revealing problems, researchers are guided to 
augment or reduce the dataset, for example, by providing 
more data, by leveraging data augmentation techniques or 
simply by rejecting certain instances of parameter values as 
faulty outliers. Through (b) uncovering relationships, 
researchers are assisted in making research hypotheses that 
may dictate the need for alternative data representations, for 
example audio features, to guide analytical processes for data 
modelling. Nevertheless, besides research-oriented tasks, an 
outstanding feature of the application is the multisensory 
navigation of data clusters, which can allow musicians (in this 
case percussionists), and instrument manufacturers to find 
out interesting sound textures and gain information on how to 
reproduce them. 

An additional key feature currently being developed is the 
ability to upload new sounds to the dataset. This functionality 
will allow researchers to effectively expand the dataset and 



musicians to locate their sound signatures within large 
datasets of registered sounds having pre-annotated physical 
properties. Such collaborative features could transform 
AudioInsight into a central hub for researchers, musicians 
and instrument manufacturers, helping them to share 
knowledge and work together on investigating perceptually 
informed physical and structural modifications of musical 
instrument design. 
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