tiny Vocos: Neural Vocoders on MCUs

Stefano Ciapponi1’2, Francesco Paissan!, Alberto Ancilotto!2, Elisabetta Farella!
Energy Efficient Embedded Digital Architectures
Fondazione Bruno Kessler', University of Trento®
Trento, Italy
{sciapponi, fpaissan, aancilotto, efarella} @fbk.eu

Abstract—Neural Vocoders convert time-frequency represen-
tations, such as mel-spectrograms, into corresponding time rep-
resentations. Vocoders are essential for generative applications in
audio (e.g. text-to-speech and text-to-audio). This paper presents
a scalable vocoder architecture for small-footprint edge devices,
inspired by Vocos and adapted with XiNets and PhiNets. We test
the developed model capabilities qualitatively and quantitatively
on single-speaker and multi-speaker datasets and benchmark
inference speed and memory consumption on four microcon-
trollers. Additionally, we study the power consumption on an
ARM Cortex-M7-powered board. Our results demonstrate the
feasibility of deploying neural vocoders on resource-constrained
edge devices, potentially enabling new applications in Internet
of Sounds (IoS) and Embedded Audio scenarios. Our best-
performing model achieves a MOS score of 3.95/5 while utilizing
1.5MiB of FLASH and 517KiB of RAM and consuming 252 mW
for a 1s audio clip inference.

Index Terms—neural vocoders, tinyML, embedded AI, micro-
controllers

I. INTRODUCTION

The Internet of Sounds (IoS), a growing field within the
Internet of Things (IoT) ecosystem, introduces the concept of
”Sound Things” [1]. These are networked computing devices
capable of acquiring, processing, exchanging, or generating
sound-related information. While research into sound analysis
within the Embedded Audio domain has seen substantial
progress [2]-[7], implementing Generative Deep Learning
technologies on embedded systems for sound-based applica-
tions presents some unique challenges, especially targeting
low-power microcontrollers (MCUs).

The rapid integration of generative technologies on IoT
devices enables significant advancements in several application
areas, ranging from anonymization [8], [9] to smart human-
machine interfaces [10]. Nonetheless, this implies address-
ing significant challenges imposed by generative networks’
energy-hungry and cloud-centric nature. Addressing the chal-
lenges of generative model deployment at the edge has become
a pivotal milestone in enabling applications like LLM-powered
smart assistants at the edge. A recent research stream has
focused on the feasibility of running GAN-based approaches
on microcontroller units (MCUs), focusing specifically on
the image domain [11]. Nonetheless, the audio and speech
domains are lagging behind, possibly due to the extra chal-
lenges of temporal consistency. By leveraging time-frequency
representations (i.e. spectrograms), we can unlock generative
capabilities in the audio processing domain that are on par

with those in the image domain. This common pratice [12]-
[15] opens up exciting possibilities such as GAN-based speech
separation [16], text-to-speech [17], text-to-audio [13]-[15],
and audio editing [18].

One major challenge still needs to be addressed: converting
the generated spectrogram into a waveform. For linear mag-
nitude spectrograms, a standard solution to estimate the phase
of the generated signal is the Griffin-Lim algorithm, or its
fast variant Fast Griffin-Lim algorithm [19] and then proceed
to compute the inverse Fourier transform. However, gener-
ating audio as its Mel-spectrogram representation is the de-
facto standard for state-of-the-art audio generation pipelines.
Mel-spectrograms are not invertible, and thus, we can only
approximate the linear spectrogram, which usually introduces
artifacts. Neural Vocoders (NV) emerged as a reliable solution
for converting Mel-spectrograms into waveforms [20]-[24].
NV are typically deep networks whose computational require-
ments are not compatible with the constraints of consumer-
grade edge devices. Additionally, NV are the final stage of
generative pipelines (e.g. text-to-speech) and thus cannot use
all the available resources.

To address the limitations discussed above, and the gap in
the literature regarding vocoders suitable for MCU devices, we
propose an efficient pipeline that enables real-time inference
on edge IoS nodes. Our contributions can be summarized as
follows:

o We propose an efficient and scalable vocoder to convert
Mel-spectrograms into waveforms inspired by Vocos and
adapted with XiNets [25] and PhiNets [26], two edge-
oriented neural architectures. The code is available on
GitHub!;

e We benchmark our vocoder on two datasets, measuring
the single-speaker and multi-speaker performance.

¢ We deploy our solution on four Arm Cortex M7-based
microcontrollers, assessing power consumption, latency,
and RAM usage.

The paper structure is as follows: Sec. II presents the liter-
ature relevant to our work, analyzing various neural vocoding
approaches aimed at enhancing model efficiency and identify-
ing literature gaps. Sec. III introduces the methods proposed in
this manuscript, briefly describing the Vocos architecture and
the optimization choices that contributed to a more efficient
vocoder. Sec. IV details the experimental setup to validate
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the optimized vocoder against different computational budgets,
showcasing both qualitative and quantitative metrics. Finally,
Sec. V describes the findings of the paper demonstrating the
feasibility of audio synthesis on tiny devices and, thus, for
IoS.

II. RELATED WORKS

In this section, we present an overview of Neural Vocoder
models and discuss various research efforts to enhance their
efficiency.

A. Neural Vocoders

Neural vocoders can be broadly classified into two fam-
ilies: autoregressive and GAN-based models. Autoregressive
vocoders generate one waveform sample at a time, modelling
the value of each timestep on previously generated ones. Al-
though these models, such as WaveNet [27] and SampleRNN
[28], can produce high-quality audio, they are computation-
ally intensive, resulting in slow inference and high memory
requirements. WaveGlow [29] represents a hybrid approach
that uses Inverse Autoregressive Flows [30] to model sample
distributions in a non-autoregressive manner, transforming a
noise latent space into a target speech distribution. On the
other hand, GAN-based vocoders, including MelGAN [31]
or HiFi-GAN [20], use a generator to produce entire audio
segments at once and a discriminator to enhance audio quality.
While this variety of vocoders may produce less consistent
audio quality than autoregressive models, they offer faster
inference and lower computational requirements, making them
more suitable for real-time applications and less powerful
hardware platforms. The improved efficiency of GAN-based
models is primarily due to their reduced parameter count,
lack of complex long-range dependency modelling, and use of
hardware-friendly operations. Most GAN-based vocoders gen-
erate waveforms by upsampling the spectrogram temporal axis.
This approach creates a common computational bottleneck
consisting of transposed convolutions and Multi Receptive
Field [32] modules stacking dilated convolutions. These op-
erations, however, can have significant memory requirements,
limiting their applicability on resource-constrained devices like
MCUs.

B. Efficient Vocoders

Research on efficient neural vocoders aims to develop
models with faster inference, real-time capabilities, and low
computational requirements. Several approaches have been
proposed to address these challenges. Basis-Mel GAN [33]
represents audio signals with learned basis and associated
weights, and it is inspired by TASNet [34]. This method
models the waveform as a non-negative weighted sum of
N basis signals, resulting in a more compact and efficient
representation that mitigates the Mel-GAN upsampling net-
work complexity. StyleMelGAN [35] modifies the Mel-GAN
architecture by employing temporal adaptive normalization to
style a low-dimensional noise vector containing the acoustic
features of the target speech, aiming to speed up inference on

high-end CPU-based architectures. Other studies concentrate
on making Waveglow-based models more efficient and faster.
Efficient WaveGlow [24] modifies the WaveGlow architecture
by replacing the WaveNet-style transform network with an
FFTNet-style [36] dilated convolution network. It results in
significant parameter reduction and faster inference while
maintaining similar Mean Opinion Scores. SqueezeWave [37]
further adapts the WaveGlow model for mobile platforms,
successfully running on devices like a MacBook Pro and
a Raspberry Pi, albeit with a slow inference speed of 21k
samples per second in the smallest model version, which can
run on the single-board computer. These advancements have
been tested across various hardware configurations, ranging
from single-board computers to high-end CPUs. However, to
our knowledge, our study is the first to target MCU platforms,
pushing the boundaries of efficiency in Neural Vocoders even

further. 117 NEURAL ARCHITECTURE DESIGN

In this Section, we present the main components of our
vocoder pipeline. First, in Sec. III-A, we summarize the work-
ing mechanisms of Vocos [38]. Then, in Sec. III-B, we present
the optimizations employed to improve the computational
efficiency of Vocos and achieve real-time inference on MCUs.

A. Vocos Architecture

Vocos [38] is a recently proposed neural vocoder. It gener-
ates the waveform by first estimating the Fourier coefficients of
the signal and then performing the Inverse Fourier Transform
(ISTFT). This vocoder design avoids the sequence of costly
upsampling operations needed to directly generate a wave-
form. In fact, Vocos substantially improves computational ef-
ficiency compared to prevailing time-domain neural vocoding
approaches.

The neural architecture of Vocos, depicted in Fig. 1, com-
prises a sequence of convolutional blocks, f;(-), to map
the input spectrogram in a latent representation (h). Then,
the conversion head (G) maps the latent representation (h)
into real and imaginary Fourier coefficients of dimensionality
nyse/2+ 1. Finally, the ISTFT maps the extracted coefficients
to the time domain representation of the signal (x).

Being F(-) the sequence of convolutional blocks, G(-) the
projection from the latent representation (h) to the Fourier co-
efficients, and X the input Mel-spectrogram, then h = F(X)
and

0=G(h), ocRm/ZHUXT " o cRT
m = (01»~~~»0nfft/2+1) (1)
pP= (Onfft/2+2a -~'a0nfft+2)

where m represents the log-scaled magnitude of the spectro-
gram and the phase (P) can be extracted from the projections
of p on the unit circle.
Finally, we can summarize the vocoder formulation in Vocos
as
x = ISTFT(exp (m)e’F). (2)

From this formulation, it is clear that there are two options
to reduce the Vocos pipeline’s complexity: (i) reduce the
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Fig. 1. The Vocos vocoder architecture projects Mel-spectrograms to the hidden representations. The hidden representation is afterwards fed to a conversion
head that generates the Fourier coefficients and generates a waveform using ISTFT.
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Fig. 2.

complexity of the neural encoding stage (F(-)) or (ii) reduce
the latency of the ISTFT.

In this paper, we conduct an empirical study on the impact
of using more efficient neural operators as Vocos convolutional
blocks. Finally, to reduce the latency of the ISTFT, we
reduce the number of frequency bins (n ;). We note that the
alternative would be to crop the audio signal, thus restricting
the application domain of the vocoder.

B. Optimizing the Encoding

To analyze the tradeoffs in terms of performance vs. mem-
ory, performance vs. latency and performance vs. model size,
we explore three convolutional blocks as alternatives to reduce
the complexity of Vocos. First, we adapt the Vocos pipeline,
restricting the network design to operations supported by

Comparison of the functional form of the benchmarked convolutional blocks. From left to right, A: ConvNext; B: PhiNet; C: XiNet.

common MCU toolchains. Then, we implement PhiNet [26]
and XiNet [25], two edge-oriented architectures.

Vocos Adaptation. The ConvNext block, depicted in Fig. 2-
A, is used as basic processing block (f;(-)) to encode the
spectrograms in Vocos. It employs a depthwise convolution,
followed by layer normalization and two pointwise convolu-
tions. While this approach achieves promising performance,
it presents two key limitations hindering its suitability for
our desired application: (i) the availability of operators on
MCU deployment toolchains and (ii) the memory footprint
of the model. Regarding (i), Vocos employs the Gaussian
Error Linear Unit (GELU) activation function in its convo-
lutional blocks, which is currently not supported by many
embedded runtimes (e.g. TFLite/STM32Cube.Ai/nncase). To
address this, we replaced GeLU with Sigmoid Linear Units



TABLE I
COMPUTATIONAL CAPABILITIES OF THE EDGE PLATFORMS USED FOR ON-DEVICE BENCHMARKING.

| Clock frequency [MHz] | RAM [kB]

External RAM [MB] ‘ FLASH [MB] External FLASH [MB]

STM32H735G-DK 550 564
NUCLEO-H7437ZI2 480 1024
STM32H7578-DK 600 620

STM32H7A3ZIQ 280 1024

16 1.00 64
N/A 2.00 N/A

16 0.64 128
N/A 2.00 N/A

(SiLU), a functionally similar operation with documented
TFLite support. In Section V-A, we quantify the impact of
these approximations on the LibriTTS benchmark. To address
the second constraint, we propose maintaining the hidden size
fixed among pointwise convolutions, thus limiting the memory
footprint of each ConvNext block.

PhiNet. PhiNets [26] is a family of neural architectures based
on inverted residual blocks [39], depicted in Fig. 2-B. Its con-
volutional block is, therefore, a sequence of pointwise, depth-
wise, and again pointwise convolutions. The main advantage
of PhiNets compared to functionally similar neural networks
(e.g. MobileNet) lies in the scaling properties. PhiNets enable
the disjoint optimization of RAM, FLASH, and the model’s
operation count. To exploit the effectiveness of this network
for vocoders, we replaced the ConvNext blocks with the same
inverted residual blocks used in PhiNets.

XiNet. Like PhiNets, XiNets [25] are convolutional net-
works designed to optimize energy consumption on resource-
constrained devices. However, XiNets employs direct effi-
ciency measurements to design the neural network. The convo-
lutional block of XiNet is designed using only operations that
are optimized on common inference toolchains. Specifically,
the structure of the XiNet blocks - depicted in Fig. 2-C -
comprises a pointwise convolution to bottleneck the number of
channels, followed by convolution and a hybrid channel/spatial
attention mechanism. Compared to PhiNets, XiNets generally
exhibit faster execution speeds, improved energy efficiency
and a smaller RAM footprint, albeit with a marginally larger
parameter footprint when scaled for a speech synthesis task.
For this, we benchmarked the performance of XiNet blocks in
the Vocos pipeline.

IV. EXPERIMENTAL SETUP

To validate the effectiveness of the proposed efficient
Vocoder, we benchmark the proposed approach at different
computational budgets. We scale the three models as de-
scribed in Sec. IV-A. We benchmark the models on two
datasets, described in Sec. IV-B. We use quantitative and
qualitative performance metrics, described in Sec. IV-C and
Sec. IV-D, respectively. Finally, we present the target platforms
in Sec. IV-E.

A. Model Implementation

To compare the backbones fairly, we conducted experiments
targeting the computational complexity of the original Vocos
implementation. We denote these models as L in the remainder
of the manuscript. Then, we scaled down all architectures

to computational budgets that enable on-device inference.
Specifically, we targeted a medium computational budget that
simulates the constraints typical of single-board computers
(e.g. RaspberryPi). Resulting models are denoted as M. Fi-
nally, we further reduce the computational requirements of the
models to achieve the least computationally intensive variants
of the models presented in this manuscript - denoted as S.
These models target MCU deployment and are tested and
benchmarked on four target platforms.

As showcased in Table II, during model scaling, we fol-
lowed the design principles of Vocos. The hidden size is
fixed for all layers that compose the network, but we change
it among different model variants. In fact, to reduce the
computational cost of the models, we change both the number
of layers and the hidden size. Additionally, we reduce the
frequency bins from 1024 to 512, which linearly impacts
the RAM usage and number of operations. For PhiNet-based
models, we use the expansion factor of 1. For XiNet-based
models, we use a compression factor of 4 in the bottleneck
of the convolutional block. We use the default attention block
proposed in the original model. However, we do not employ
the broadcast skip connection mechanism presented in the
original XiNet paper. For Vocos, we report the hidden size
for the second pointwise convolution as “Hidden Dim 2” in
Table II. For a reference implementation of PhiNet and XiNet,
refer to the official repo?.

To compare with a Vocoder that does not use deep learning,
we report the results obtained using the Fast Griffin-Lim
algorithm [19] coupled with Mel inversion.

TABLE 11
MODEL HYPERPARAMETERS EMPLOYED FOR EMPIRICAL EVALUATION OF
THE PIPELINE. VOCOS STD DENOTES THE ORIGINAL MODEL WITH THE
GELU ACTIVATIONS.

Size |  Model ngge N Hidden Dim  Hidden Dim 2

XiNet 512 3 128 N/A

1) PhiNet 512 8 128 N/A
Vocos 512 3 128 128

XiNet 512 4 512 N/A

= PhiNet 512 18 512 N/A
Vocos 512 8 512 768

XiNet 1024 8 512 N/A

O PhiNet 1024 8 1024 N/A

Vocos 1024 8 512 1536

Vocos STD 1024 8 512 1536

Zhttps://github.com/micromind-toolkit/micromind



B. Datasets

We evaluated the performance of the proposed architec-
ture variants through experiments on the LibriTTS [40] and
LJSpeech [41] benchmarks.

LibriTTS. To promote a fair comparison with Vocos, we
trained the models on the LibriTTS dataset. LibriTTS is a
multi-speaker English corpus of approximately 585 hours of
read English speech. We use the entire training subset (both
train-clean and train-other). The sampling rate is
fixed to 24 kHz. We apply a random gain to the audio samples,
resulting in a maximum level between -1 and -6 dBFS.
LJSpeech. A widely used benchmark for speech synthesis
tasks is LJSpeech. LJSpeech contains 13,100 short audio
clips of a single speaker reading passages from 7 non-fiction
books. Following the standard practice, we adopted the train-
validation split from the HiFi-GAN paper, consisting of 12,950
samples for training and 150 samples for validation, each
corresponding to audio clips between 1.11s and 10.10s.
We resample the data from 22050 Hz to 24 kHz. For each
audio sample, we compute Mel-scaled spectrograms using
nype = 1024, hop, = 256, and the number of Mel bins set
to 80. We note that the bin count differs from the one used
for the LibriTTS pre-processing. We do this to align with the
Tacotron [17] pipeline for TTS evaluation. As in LibriTTS,
we apply a random gain to the audio samples, resulting in a
maximum level between -1 and -6 dBFS.

For both datasets, we crop all the waveforms to 16384
samples during the Vocoder training. This procedure reduces
the training time while guaranteeing good variability among
audio recordings. The implementation of the pre-processing
pipeline is available in the official Vocos repository?.

C. Quantitative Evaluation

We use five metrics to evaluate the reconstructed speech
quality, each representing a specific property of the generated
signal. We describe each metric in detail below.

PESQ. The Perceptual Evaluation of Speech Quality [42] is
a metric originally developed to estimate the speech quality
experienced by a telephony system user. PESQ uses the refer-
ence audio and analyzes the generated speech signal sample-
by-sample after a temporal alignment. It analyzes features like
distortion and noise in a degraded speech signal and maps
them onto a predicted listener experience score. Validated
against human listening tests, PESQ offers a standardized
way to assess speech quality in research and development. As
PESQ results principally model mean opinion scores (MOS),
it is a scale ranging from 1 (bad) to 5 (excellent). For this
metric, higher is better.

UTMOS. The UTokyo-SaruLab Mean Opinion Score [43]
is a publicly available MOS prediction system developed by
researchers from the University of Tokyo for the 2022 MOS
challenge. The MOS estimation is based on Wav2Vec2 [44]
features extracted from the input audio. This metric is between

3https://github.com/gemelo-ai/vocos

1 (bad) and 5 (excellent). Higher scores correlate with better
audio synthesis.

V/UV F1. Introduced by Morrison et al. [45], the
voiced/unvoiced F1-score measures the quality of frame-level
classification between voiced/unvoiced signals. As V/UV F1
indicates whether the frame exhibits the periodic structure of
a pitched sound, low values correlate to samples exhibiting
artifactual patterns. Higher is better.

Periodicity. Compares the frame-wise periodic structure of
the signal. For this metric, lower is better as it implies that
the generated audio closely resembles the periodic structure
of the original waveform.

ViSQOL. Proposed by Chinen et al. [46], it is designed to
measure the perceptual quality of audio and speech. Since our
evaluation is performed on speech datasets, we utilize ViSQOL
in speech mode (at 16 kHz) to compare the different Vocoders.

D. Qualitative Evaluation

Quantitative metrics provide a reproducible comparison
between different Vocoders. However, user perception remains
an essential aspect of generative modelling. We conduct two
user studies to verify our model’s perceived quality. First,
we evaluate the naturalness and fidelity of the reproduced
waveform with respect to the original audio. We use the
same protocol employed in the Vocos evaluation. To assess
the naturalness, we collect a MOS score (scale 1 to 5) for
samples without presenting the reference to the users. Then,
we measure the fidelity to the original waveform by computing
a similarity-MOS (sMOS) score, in which the user provides a
score from 1 (bad) to 5 (excellent), evaluating the fidelity to
the input audio.

Finally, we evaluate the perceived quality of the model on
a downstream, generative task. Using the Tacotron pipeline,
we generate speech from text prompts. The only component
of the pipeline that we changed is the Vocoder. During this
user study, we provided the users with the input prompt for
the model, and we asked them to rank the audio quality
from 1 (bad) to 5 (excellent) using the Waveglow generated
speech as a reference stimulus. This evaluation can be crucial
in benchmarking our model for smart assistant applications,
which are suitable target applications for the Internet of
Sounds domain.

Each user study has eight samples and compares the PhiNet-
based, XiNet-based and scaled Vocos pipelines. We collect
results from 18 participants. We conducted both user studies
using the WebMUSHRA [47] toolkit. All the generated audio
is available for listening on a companion website®.

E. On-device Benchmarking

To validate our results on MCUs, we deployed the S-
variants of our model on four ARM Cortex-M7-powered
boards. Precisely, we measure inference time, RAM us-
age, and model footprint on the STM32H735G-DK,
NUCLEO-H743, STM32H7S78-DK, NUCLEO-H7A3. For

“https://sciapponi.github.io/tinyvocos-companion



TABLE III
QUANTITATIVE COMPARISON OF MODEL CONFIGURATIONS ON THE LIBRITTS TEST-CLEAN-100 SET.

Size | Model | F1 V/UV (1)  Periodicity () PESQ (1) UTMOS (1) ViSQOL (1) | Params [M] MAC [M]
XiNet 0.921 0.173 2.09 3.09 273 0.39 39.5
» PhiNet 0.917 0.183 2.11 2.96 2.63 0.27 224
Vocos 0.920 0.173 2.37 2.96 1.32 0.26 26.0
XiNet 0.928 0.156 2.52 3.46 341 6.76 677
s PhiNet 0.929 0.157 2.69 3.37 2.96 6.72 516
Vocos 0.947 0.120 3.33 3.67 1.26 6.97 697
XiNet 0.925 0.158 2.39 3.54 3.03 12.3 1230
g PhiNet 0.952 0.130 3.28 3.49 3.49 12.4 968
Vocos 0.951 0.112 3.51 3.46 4.07 13.5 1352
Vocos STD 0.958 0.101 3.70 373 4.08 13.5 1352
| GL + Mel Inversion | 0.517 0.482 1.12 1.27 1.95 \ N/A N/A

TABLE IV

QUANTITATIVE RESULTS FOR EACH MODEL CONFIGURATION ON THE LISPEECH VALIDATION SET. WE USED 80 MEL BIN SPECTROGRAMS TO MAKE THE
MODELS COMPATIBLE WITH TACOTRON.

Size ‘ Model ‘ F1 V/UV (1) Periodicity () PESQ (1) UTMOS (1) ViSQOL (1) ‘ Params [M] MAC [M]
XiNet 0.9469 0.1422 2.452 3.842 3.214 0.39 39.40
%) PhiNet 0.9552 0.1627 2.369 3471 2.738 0.25 22.12
Vocos 0.9469 0.1529 2.619 3.564 2.580 0.24 24.18
| GL + Mel Inversion | 0.6715 0.4791 1.129 1.276 2.294 | N/A N/A

sMOS - LibriTTS validation Data

MOS - LibriTTS Validation Data

MOS - Tacotron Generated Speech
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Fig. 3. sMOS for LibriTTS evaluation.

the NUCLEO-H743, we also report the power consumption
of the proposed Vocoder. The computational constraints of
the target platforms, reported in Table I, range from clock
frequencies of 280 MHz to 600 MHz, from 564 kB to 1 MB
of RAM and from 0.64 MB to 2 MB of FLASH. We used the
ST Developer Cloud® to analyze the on-device performance
of the models on all platforms except the NUCLEO-H7A3.

To measure the power consumption on the NUCLEO-H7A3,
we used a 12 shunt resistor. Then, we computed the average
power consumption as:

Fig. 4. MOS for LibriTTS evaluation.

Fig. 5. MOS for TTS evaluation.

F. Training Strategy

For all the experiments reported in this paper, we used the
same training loop presented in Vocos. The code is publicly
available in the original Vocos GitHub®.

V. RESULTS

This section presents the results of the empirical analysis we
conducted on the proposed vocoders. Sec. V-A summarizes
the quantitative results, highlighting the best performance-
complexity trade-off. In Sec. V-B, we present the outcome
of the two user studies. Finally, Sec. V-C presents the power

T
1 i i -
p— - ZI(t)V(t) 3) Ezzlsrgmptlon analysis on the NUCLEO-H7A3 development
t=to :

where I(t) is the current measured over the shunt resistor
at time ¢ and V(¢) ~ 1.8V is the MCU VIN. For all the
measurements, we used a time window of 2s to account for
statistical fluctuations in measurements.

Shttps://stm32ai.st.com/st-edge-ai- developer-cloud/

A. Quantitative Analysis

We report the results on the LibriTTS and LJSpeech
benchmarks in Tables III and IV, respectively. On the Lib-
riTTS benchmark, we note the comparable performance of

Shttps://github.com/gemelo-ai/vocos



the original Vocos model with the GeLU and SiLU acti-
vations, validating this design choice. Furthermore, PhiNet
and Vocos achieve comparable performance for L models,
while XiNet performs marginally worse. Only for UTMOS,
XiNet outperforms both Vocos and PhiNet, suggesting that the
qualitative perception of the generated audio might be superior.
For networks with a medium computational budget (M), we
targeted models with half the computational requirements of
the original Vocos model (around 6M params and 6B MAC).
We observe a similar trend as per the L models. Vocos is the
best-performing model for V/UV F1, Periodicity, PESQ, and
UTMOS. For ViSQOL, however, we observe a considerable
improvement when adopting the XiNet model. Among the S
models - with computational requirements of 0.3M parameters
and ~25M MAC - all models achieve similar performance
on the LibriTTS and the LJSpeech benchmarks. Vocos ob-
tains the highest PESQ, but XiNet obtains the best UTMOS
and ViSQOL. PhiNet achieves a comparable V/UV F1 and
Periodicity to XiNet and Vocos, with minimal performance
degradation in UTMOS and ViSQOL.

As expected, from L to S, we observe a decreasing trend in
V/UV Fl, Periodicity and PESQ. Interestingly, UTMOS and
ViSQOL exhibit less sensitivity to model size reduction. This
observation suggests that smaller models can generate intelligi-
ble speech despite slightly degrading objective reconstruction
quality, highlighted by the decrease in PESQ, V/UV F1 and
Periodicity. This characteristic could prove advantageous in
text-to-speech applications, where maintaining intelligibility
remains paramount even with potential trade-offs in objective
quality metrics. Finally, we observe that all benchmarked
models obtain superior performance with respect to the Fast
Griffin-Lim algorithm.

B. Qualitative Analysis

The quantitative evaluation suggests that the perceived
quality might be kept despite the considerable complexity
reduction obtained using the proposed optimization. The two
user studies validate this hypothesis. In Table V, VI we report
the MOS scores with their respective confidence intervals at
0.95. Instead, in Fig. 3, Fig. 4, Fig. 5, we report the outcome
of the two user studies as boxplots, which showcase median
and first and third quartile of the gathered results.

On the LibriTTS samples - reported in Fig. 3, Fig. 4 and
Table V - the user preference is towards the Xinet model for
both Naturalness and Similarity to the reference stimulus. The
PhiNet model generated more robotic utterances, as confirmed
by the lower MOS scores than XiNet. Contrary to what
we expected from the findings in Table IV, the waveforms
generated by Vocos were rated as extremely unnatural and
dissimilar from the reference waveform, showcasing multiple
artifacts upon generation.

Table VI and Fig. 5 display the qualitative results obtained
using the TTS pipeline. Also in this user study, Vocos is
evaluated as the worst model at this computational scale,
although with a lower margin than the results on the LibriTTS
benchmark.

TABLE V
MOS AND SMOS SCORE ON 8 LIBRITTS AUDIO SAMPLES.

Size | Model sMOS MOS
PhiNet 3.02 £0.12 3.60 £ 0.13
%) XiNet 3.24 £ 0.12 395 + 0.11
Vocos 1.48 £+ 0.14 1.52 + 0.16
| Reference 4.87 & 0.06 N/A
TABLE VI

MOS SCORES - QUALITATIVE TEST ON THE TACOTRON PIPELINE.

Size | Model MOS
PhiNet 2.55 £ 0.11
%) XiNet 2.89 £+ 0.12
Vocos 1.90 &+ 0.10
| Waveglow 4.73 + 0.10

C. On-device Benchmark

We measure the required RAM and FLASH for
each S-model, considering the optimizations employed by
STM32Cube.Al The inference time to process 1s of audio,
reported in Table VII, is mainly dependent on the differences
in clock frequencies and whether a model needs to access
external RAM or FLASH. As expected, XiNet uses the lowest
amount of RAM among benchmarked models (517KiB) de-
spite its marginally higher parameter count. The most memory-
hungry network remains Vocos, with 737KiB of RAM.

On all benchmark platforms, the proposed vocoders obtain
real-time performance, taking 630 ms to process 1s audio in
the worst case. With the lowest clock frequency of 280 MHz,
without using external memory, the NUCLEO-H7A3 exhibits
the biggest gap in inference time among models (589 ms for
Vocos and 631 ms for PhiNet). As expected, most inference
time is dedicated to encoding the Mel-spectrograms in the
latent representation, as showcased in Fig. V-C and Table VIIL.
Conversely, on the STM32H7S78-DK, all models perform
with a similar latency, with Vocos being marginally slower
(+25ms), due to the additional memory transfers needed to
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TABLE VII

RESULTS OF THE ON-DEVICE BENCHMARKING OF THE PROPOSED VOCODERS.

Inference Time [ms]

Board | Model | FLASH [MiB] RAM [KiB] | Total Feature Extraction Head | Power Usage [mW]

XiNet 1.5 517 402 237 165 N/A

STM32H735G-DK PhiNet 1.1 559 396 235 161 N/A
Vocos 1.3 737 531 357 174 N/A

XiNet 1.5 517 380 271 109 N/A

NUCLEO-H743 PhiNet 1.1 559 393 281 112 N/A
Vocos 1.3 737 365 255 110 N/A

XiNet 1.5 517 323 215 109 N/A

STM32H7S78-DK | PhiNet 1.1 559 325 214 111 N/A
Vocos 1.3 737 356 240 116 N/A

XiNet 1.5 517 613 448 165 252

NUCLEO-H7A3 PhiNet 1.1 559 631 453 178 270
Vocos 1.3 737 589 414 174 260

exploit the external RAM. We observe a similar trend on the
STM32H735G-DK and NUCLEO-H743.

Finally, we observe that all vocoders have a power con-
sumption around 250 mW, remarkably lower than single-board
computers and workstations, which consume from 5 to several
hundred Watts. Being low-power, these models enable a wide
variety of generative applications in the IoS domain.

VI. CONCLUSION

In this work, we presented an empirical study on the
effectiveness of spectral coefficient-based vocoders as scalable
solutions for on-device inference. We compared the Vocos
pipeline by replacing the convolutional blocks with more
efficient variants from the tinyML literature (i.e. PhiNet and
XiNet). Our quantitative and qualitative results demonstrate
the feasibility of deploying neural vocoders on resource-
constrained edge devices, potentially enabling new applica-
tions in IoS and Embedded Audio scenarios.

We observed some discrepancies between the results ob-
tained using automated qualitative metrics (such as UTMOS
and ViSQOL) and the user study. This is expected, especially
considering the different nature of each metric. However, we
think it is important to provide them as a reference for future
works.

The proposed changes enable on-device audio synthesis
while maintaining subjective speech quality suitable for text-
to-speech (TTS) applications. This is evidenced by our best-
performing model achieving a MOS of 3.95 out of 5 while
utilizing only 1.5MiB of FLASH memory and 517KiB of
RAM. Furthermore, this model consumes only 252 mW for
a l-second audio clip inference, confirming its suitability
for energy-efficient deployments. These results open up new
possibilities for IoT and edge computing scenarios, where
resource constraints have traditionally limited the deployment
of high-quality audio synthesis models.
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