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Abstract—Low-cost Autonomous Recording Units (ARUs), like
the AudioMoth, and advances in AI-based classifiers have en-
abled researchers and hobbyists to increase automation of the
previously manual discipline of species monitoring. Often, the
evaluation of acoustic monitoring still has to be done manually
and one particular reoccurring challenge in the automated evalu-
ation is the clock drift of the distributed ARUs. In this paper, we
present a proof of concept for a time synchronization approach
based on Reference Broadcast Synchronization (RBS) that uses
random environmental sound events like bird calls to synchronize
the clocks of receiving recording units. The application of RBS in
the acoustic monitoring context is evaluated by simulation with
the TAWNS framework. Subsequently, a problem in using RBS
with sound events is identified and mitigated.

Index Terms—AudioMoth, ARUs, clock drift, Internet of
Sounds, RBS, TAWNS, time synchronization

I. INTRODUCTION

The Intergovernmental Science-Policy Platform on Bio-
diversity and Ecosystem Services (IPBES) records a rapid
decline in biodiversity [15]. Traditionally, species monitoring
is often done manually in field surveys [25] and requires
considerable effort. Therefore, the potential to improve species
monitoring of new solutions is regarded as high. Acous-
tic sensing is an emerging topic to provide a solution for
this challenge, e.g., [26], [28]. Advances in AI-based clas-
sifiers, e.g., [16], [17] and the availability of small, low-
cost, power-efficient, and smart monitoring devices, like the
AudioMoth [14], provide a good perspective for automated
acoustic species monitoring. These Autonomous Recording
Units (ARUs) are increasingly popular [28]. They can provide
low-disturbance, large-scale monitoring of sound-producing
animals, e.g., birds or mammals such as bats. In the following,
we focus on bird species monitoring as it is a well-researched
topic that provides a good indicator for environmental health
and ecosystem changes [4], [10], [12].

We face multiple challenges when deploying multiple ARUs
as an acoustic sensor network for bird species monitoring. The
topic includes the complex tasks of identification, localization,
and counting of birds. They consist of multiple research areas
and ultimately remain unresolved [28]. There are different

types of solutions for parts of this complex task, but many
are time-based approaches. For example, localization can use
energy-based methods, e.g., [19], that assume a known loss
of energy in regard to the signal propagation. For bird species
monitoring, the emitted energy is unknown and the signal itself
difficult to separate. However, time-based solutions, e.g., [6],
have been applied on bird acoustics, where time differences
were extracted manually, e.g., [8], [28]. One challenge in using
ARUs for an automated audio monitoring sensor network is
their clock drift, which impairs even manually extracted time
difference. Current solutions for the time synchronization of
ARUs either require manual effort or communication modules
that reduce battery life, e.g., GPS [33]. This impairs the
feasibility of ARUs in bioacoustic monitoring. At the moment,
one has to decide to live with either a reduced runtime or a
reduced accuracy due to clock drifts.

In this paper, we propose to apply a time synchroniza-
tion approach based on Reference Broadcast Synchronization
(RBS) to provide passive time synchronization for the most
basic configuration of an ARU without the use of communi-
cation modules by using the bird calls as reference events. The
key contributions of this paper are threefold:

1) We present a solution approach for a passive time
synchronization of ARUs by using only the recorded
sound events.

2) A challenge for using sound events with RBS is identi-
fied and a first approach for mitigation is proposed.

3) Possible impacts on accuracy are estimated with a
first implementation in an evaluation with a Terrestrial
Acoustic and Wireless Network Simulation (TAWNS)
framework simulation.

The remaining part of this paper is organized as follows:
First, we review the use-case context of bird species monitor-
ing and the several research areas that constitute the foundation
for the time synchronization of ARUs in Sec. II. Then,
Sec. III will present our approach and Sec. IV the test setup
simulation environment. We analyze preceding requirements
and the application of RBS using reference sound events in



Sec. V. Sec. VI identifies the problem of applying traditional
RBS to reference sound events and proposes a solution that is
evaluated. Finally, Sec. VII concludes this paper.

II. RELATED WORK

A. Clock Drift

Typically, the clock in ARUs consists of a counter, e.g., a
hardware register, which counts a periodic signal from a crystal
oscillator. Clock drift happens, if the time between actual
signals differs from the expected time interval of the oscillator.
This oscillation varies between crystals and is impacted by
several environmental factors, also with varying sensitivity.
Therefore, the clocks drift continuously with changing drift
rates due to day and night temperature, pressure, and humidity
changes, the level of excitation through the declining supplied
battery power, and many more [34]. Subsequently, the clock
offset to the actual time is comprised of three independent fac-
tors [33]: (1) The initial clock offset, which often necessitates
a time synchronization at system setup. (2) An independent
noise with deterministic and random components, e.g., delay
of time stamping. (3) The clock skew due to the variation in
oscillation times, which in a simple way could be modeled by
a constant drift or a randomly changing drift, but is largely
impacted by the environmental factors. This also necessitates
regular time synchronizations to keep the clocks accurate.

B. Time Synchronization

The typical time synchronization method in the context
of the internet or Wireless Sensor Networks (WSNs) is the
Network Time Protocol (NTP) [20]. It synchronizes two nodes
with a message round trip and taking two timestamps each
for the sender and receiver. This benefits from having similar
delay between the two send directions. It is a quick and simple
method to achieve millisecond accuracy to a global time by
hierarchically synchronizing two nodes. This is even more
accurate, when only used locally in a single hop transmission.
Here, its variation can be categorized into three parts: (1)
sender delay, (2) propagation delay, and (3) receiver delay.

In a WSN context, if higher accuracy is needed or a global
reference can not be obtained accurately enough with NTP,
using Global Navigation Satellite Systems (GNSSs) for time
synchronization is a common alternative or addition. It pro-
vides very accurate time synchronization with microsecond ac-
curacy on at least a regional scale, depending on the particular
GNSS used, like GPS [33]. Because of its popularity and ease
of use, ARUs with GNSS modules or at least an attachment
are prevalent. However, the use of GNSS modules increases
the power consumption. Thus, it requires more investment in
power infrastructure or manual maintenance. For ARUs this is
a considerable factor.

For the specific acoustic type of WSN, the Wireless Acous-
tic Sensor Network (WASN), acoustic synchronization is an
additional alternative that can be independent of the wireless
communication between nodes [28]. In this case, the alignment
between recorded acoustic signals is estimated by synchroniz-
ing sources within the signal in the presence of noise. We

will differentiate this further in Sec. II-E. Since the signal
source alignment is not only impacted by clock drift, but
also by sound propagation, either the spatial distribution of
microphones needs to be small, e.g. gathering all sensors at
a single location for synchronization, or the location of the
sound event has to be known to calculate the propagation
delays. This method can alternatively be used just to align
the acoustic signals, e.g., to improve the sound separation, but
the accuracy of the time offset information is impacted by the
clock drift, if used for further evaluation. We use a simple
setup for the time offset estimation as presented in Sec. V-B
and focus on using multiple time offsets for a more robust
time synchronization based on RBS.

C. Reference Broadcast Synchronization (RBS)

Reference Broadcast Synchronization (RBS) [9] is an alter-
native time synchronization method to achieve much higher
accuracy than NTP in the WSN context. A sensor node
broadcasts a signal and only the time of the signal receivers is
synchronized. Therefore, a minimum number of three nodes or
two nodes and a separate reference event emitter is necessary.
With randomized network nodes as reference signal emit-
ters, the whole WSN can be locally synchronized. External
timescales can also be included by synchronizing at least one
node to this timescale, e.g., one node with GPS or NTP time
synchronization. In comparison to NTP, RBS does not set the
node clocks, but generates a clock conversion library for each
node pair from the difference in reference event receive times.
It assumes minimal variance in transmission time, which is
true for radio signals, but much worse with sound propagation.
The random noise in signal receive times is mitigated by
averaging multiple reference events. To also include clock
skew in the time synchronization, the average is upgraded
to a least-squares linear regression. With RBS, if a subset
of the nodes can be synchronized and there are sufficiently
many reference events for overlapping subsets, the whole set
of nodes can be synchronized. Increased spacing between
nodes creates more subsets and the synchronization accuracy
decreases proportional to the square root of the number of
synchronization hops. In contrast, with larger sets the chance
of one node being poorly synchronized is increased.

D. Terrestrial Acoustic and Wireless Network Simulation
(TAWNS)

To the best of our knowledge, there are only few acoustic
network simulators addressing bioacoustic use cases such as
the one addressed in this paper. Most focus on indoor environ-
ments, such as pyroomacoustics [30], real-time audio repro-
ductions [11], or simulating sounds in computer games [21].
For this work, we require a simulator capable to simulate
more than spatial sound propagation in a 3D environment. We
also simulate sensor-dependent features like the clock drift.
To the best of our knowledge, there is only the TAWNS
framework [2] that combines the two aspects of (wireless)
sensor network simulation and bioacoustic sound simulation.
This is enabled due to its modular design. For network



simulation, it uses the popular OMNeT++ framework [23], in
which the well-known INET framework [22] is implemented.
While mainly a framework capable of simulating different
types of sensor networks, including various topologies and
wireless communications, it also supports common time drift
models for the sensor clocks TAWNS inherits all INET func-
tionalities and more, combining them with the simulation of
sound propagation. For that, it extends Scaper [29], a library
for soundscape augmentation and generation, that by default
does not support simulation of sound propagation. A custom-
designed sound propagation model has been added in TAWNS.
Additionally a list of model parameters has been derived from
real measurements of bird acoustics. Consequently, TAWNS
is extremely well suited for this work, in which we focus on
correcting time drift in ARU recordings of bioacoustic signals.

E. Blind Source Separation (BSS)

In the context of separately recorded audio files the syn-
chronization of audio files is often done manually and/or by
emitting an artificial sound event that is much louder than the
environment and therefore distinctive, e.g., a movie clapboard
or gunshot [26], [28]. Extracting individual bird calls within
the recorded sound presents a challenge. Background noise
or other birds often interfere and present a problem. BSS
addresses the extraction of the individual sound event from
a composited signal without any prior information about
it [5], [24]. This is a complex problem with multiple different
approaches [7], [31]. Fortunately for the time synchronization,
only a single feature of a sound event needs to be the reference
between multiple recordings for a time difference estimation.

One of the most popular methods of time difference esti-
mation is Generalized Cross-Correlation (GCC), which was
originally introduced in 1976 [18]. The Fourier transform
of two signals is calculated and its cross-spectral density is
determined. This is finished by a weighting function like
phase transform (PHAT) as a popular choice due to its
robustness [18]. As a result, maximum peak shifts correlations
determine the time shift between the signals. A popular
alternative that focuses more on voice signal processing is
calculating the cross-correlation of Mel-Frequency Cepstral
Coefficients (MFCCs) [13]. Calculating the MFCCs also starts
with the Fourier transform. Then, a Mel band-pass filter maps
the spectrum onto the Mel scale by taking the logarithms
of the powers at each of the Mel frequencies. Finally, the
Discrete Cosine Transform (DCT) is calculated [1]. In our
work, we utilize the cross-correlation of MFCCs to estimate
time differences as it is robust to noise, an implementation is
easily available, and it provides a solution to a challenge that
is not in the focus of this paper.

F. Deployment Context

Time difference estimation methods use the time differences
to infer information about the sound event. This is impacted
by time differences that are independent of the sound event
itself, like clock drift. In long-term deployments of ARUs this
can accumulate into a large impact on the inferred results,

since manual time synchronization takes effort and automatic
time synchronization requires communication and adding a
communication module increases effort in maintenance due
to the larger power consumption. It should be noted that
the AudioMoths can be synchronized with specific audio
commands, which are embedded in played audio. However, its
functionality, especially over large distances is only marginal.
Also, the AudioMoths are not equipped with speakers by
default. This also requires more effort or more complex setups.
A passive time synchronization promises to provide the lowest
effort solution. To the best of our knowledge, providing passive
regular time synchronization for ARUs in the context of
bird species monitoring has not been done. Our approach
for time synchronization in this context should ultimately
enable more accurate solutions for the complex task of bird
species monitoring with a low entry point for hobbyists and
researchers.

III. TIME SYNCHRONIZATION APPROACH

We want to increase the accuracy of time-based sensing
algorithms by providing time synchronization to the baseline
ARU deployment. As the setting, we have the bird calls,
i.e., randomly distributed audio source nodes with unknown
location, and ARUs, i.e., audio recording nodes with known
location and drifting clocks that lead to inaccurate recording
timelines. For accurate time difference estimations, we need
to align the timelines of the different recordings, i.e., we need
timeline mapping functions between the nodes. We also need a
time synchronization algorithm that can be applied subsequent
to the monitoring task as we only gain access to the recording,
when the data is manually collected.

The known time synchronization method for similar restric-
tions in the WSN radio communication context is RBS as it
creates a clock conversion library for each node pair. In RBS,
only the receive timestamp of the reference broadcast from a
randomly chosen node is needed for the receiving nodes to
coordinate the time synchronization. As the broadcast node
does not have to be part of the system, we consider each
bird call as a broadcast node message, which is called the
reference broadcast event. Determining the broadcast origin
in RBS is handled by the communication module and the
position is not important as the propagation delay is considered
negligible. Therefore, we need to extract timestamps from the
recording that correspond to the same source. This BSS part
can be modularly exchanged as long as it generates a time
offset or timestamp of the received broadcast event from the
same audio source. The RBS algorithm leverages randomly
distributed radio packet arrival time offsets to increase accurate
results with multiple broadcast events. We propose to use the
varying sound receive times due to the random sound source
locations to achieve a similar effect. We will consider the
problems arising from this assumption in Sec. VI. Therefore,
we initially follow the standard RBS algorithm to calculate
the clock conversion library in our simulation.
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Fig. 1: Node placement for the test setup

IV. SYSTEM MODEL

Our focus is on the context of acoustic monitoring with
ARUs on the example of bird species monitoring. We consider
the AudioMoths [14] as the used ARUs in their minimal
hardware configuration as they are commonly used in this
context. Each node is only equipped with a drifting Real-Time
Clock (RTC), batteries, and the audio recording equipment.
Therefore, no radio communication is possible. In the bird
species monitoring context, the ARUs are typically deployed
inside a forest with somewhat regular distances in an irregular
shape, depending on the environment. For our proof of con-
cept, we simplify this with a square grid based deployment,
which is displayed in Fig. 1. As we identify in Sec. V, the
placement has an impact on the time synchronization, but our
proposed mitigation in Sec. VI works regardless of the specific
deployment positions.

We use the TAWNS framework [2] for our simulative
evaluation. The simulation framework enables the use of real
bird call samples as foundation and generates noise, delay,
and more according to the simulation setup. We selected the
common redstart (Phoenicurus phoenicurus) with a distinctive
bird call and a low level of forest noise as BSS is not the focus
of this paper and this constitutes an easier scenario for the BSS
task. Additionally, it should be noted, that a more complex
BSS can also solve the task of sound event recognition.
This identifies the nodes that were able to record the sound
event and selects them as nodes for the time synchronization.
Since the time synchronization of overlapping node subsets
combines to a time synchronization for the whole set, we
provide the proof of concept for a whole set, by evaluating
only a subset. Therefore, the subset can be considered as the

Tab. 1: Test setup parameters

Parameter Value

Simulation Duration 93 s
Simulation Area 65 m x 65 m
Recording Nodes 16

Node Distance 15 m
Border Distance 10 m

Sound events 30

whole set and in our setup, all nodes are able to record the bird
call so that sound event recognition is for all nodes specified
as true.

The parameters of the simulation test setup are recorded in
Tab. 1. For comparable results to RBS [9] with traditional radio
broadcasts, we choose a setup of 16 recording nodes and 30
reference sound events. For distinct reference event separation,
we define a window of three seconds for each sound event
and a single window as simulation start and control sample,
which results in a simulation time of 93 seconds. The four
by four grid of the 16 recording nodes is spaced according
to previous field experience, where all nodes are be able to
record the sound event. In practice, a four times more sparse
deployment should still include sufficient nodes for a time
synchronization. We specify a simulation area of 65 by 65
meters and a spacing of 15 meters between the nodes, which
leaves a 10 meter border.

V. PROOF OF CONCEPT

For the evaluation of the proof of concept for our time
synchronization approach, we focus on analyzing a single time
synchronization for our set of nodes. We consider a small time
window in the morning with a low forest noise background as
the application context that is simulated with TAWNS. This
could exemplify a time synchronization scheme, where the
nodes are synchronized daily in the morning. All 16 ARU
nodes are recording audio files with their RTCs as timeline and
the raw recording is evaluated. For the evaluation of our RBS-
based time synchronization approach, we have to consider
several prerequisite aspects: The generation of the recording
data is completed by TAWNS according to our system model.
Clock drifts are simulated separately in TAWNS and can be
combined afterwards. Lastly, we have to extract a timestamp
or an offset between sound events from the recording data
with BSS.

A. Clock Drift

There are two main challenges in simulating clock drifts:
The model choice and the scaling. Both should preferably be
solved by doing a hardware analysis. This will be future work
due to lack in sufficient amount of hardware. We tested basic
clock drift models and Fig. 2 shows a simulation of a random
clock drift model with randomly changing clock skew for the
16 ARU nodes. The scaling of the clock drift is dependent
on model parameters and the simulation time. Rhinehart et
al. [28] specify ARU clock drifts of up to 10 seconds per day.
This could be used as foundation for the simulation, but also
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Fig. 2: Clock drift simulation for 16 nodes with the random
clock drift model

introduces other variables like time synchronization frequency
and initial clock offset due to the impact of the simulation
time. For the application of bird species monitoring, this also
includes restrictions due to the sound events not being created
as part of the process, e.g., audio playback by a speaker node,
but having to rely on existing environmental sound events.
In conclusion, the simulation of clock drifts introduces too
much test complexity for a proof of concept. Fortunately, with
the random distribution of relative clock drifts around zero,
we know the general time synchronization characteristics of
our approach from RBS [9]. The missing difference to our
approach is the impact from sound as the reference event
medium, which is only dependent on the recording data. Also
with the simple BSS setting as presented in the following
section, there is no error in extracting the timestamp. So the
impact of a simple clock drift model offset is immediately
negated in the time synchronization and more complex models
require further research. Therefore, we exclude the clock drifts
in our analysis and only consider the raw audio files for the
time synchronization.

B. Blind Source Separation (BSS)

As we only consider a simplified application scenario re-
garding the BSS, the requirement for BSS of extracting a
timestamp or sound event offset from the recording data is
not a challenge for our proof of concept. For verification,
we manually analyzed the recording data to determine the
correct sound event times to facilitate a ground truth. We
compare a simple peak finding solution and a more robust
algorithm from the audio-offset-finder Python library [27] that
uses cross-correlation of standardized Mel-Frequency Cepstral
Coefficients. The Mel-Frequency Cepstral Coefficients are
more designed for speech recognition, but will suffice in this
scenario and cross-correlation is already widely used in this
context. Both BSS methods always successfully identify the
sound event time or offset. Therefore, all following evaluations
of time synchronizations are implemented with the cross-

correlation algorithm. A more complex analysis of BSS for
bird calls is not focus of this proof of concept and should
be done with much more complex bird call and noise test
setups in separate work. For the time synchronization, we only
need the event times, which we were able to extract from the
simplified setup for our proof of concept.

C. RBS with Reference Sound Events

After the successful event time extraction by BSS, each
reference sound event generates a set of offsets for each
pair of recording nodes, which can be used to create the
RBS clock conversion library. Since our setting does not
include clock skew, we can consider the average of the sound
event offsets instead of the least-squares linear regression. We
define the average of all node clocks as the reference absolute
time, which simplifies the automated coordination of a local
timescale. Further, with no clock drift in this proof of concept
evaluation this also corresponds to the global simulation time.

The resulting calculated node offsets are displayed in Fig. 3.
A first expectation for the results is a decreasing offset with
increasing number of reference events. This would be the
expected result of RBS. It is also the case here and would
probably get more prominent with more replications. However,
the offsets do not converge into a single grouping, but rather
into three. The four center nodes and the four corner nodes
create their own separate offset grouping. This originates from
the slow sound propagation in comparison to radio and the
concept that the average distance of the node positions to other
random points in the simulation area is not the same. The
group spacing is impacted by node distance and the formation
of distinct groups by the symmetrical simulation setup. In
conclusion, due to the much larger variations in sound event
receive times, this impact can not be ignored for reference
sound events as RBS assumes with radio signals. However, for
example, location determination of bird calls can also work
with four nodes, which also largely mitigates this problem.
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Fig. 3: Offset analysis of basic RBS with sound events (legend
matches node placement, color for row, line style for column)



Two nodes always have the same distance to their average
and more nodes can be arranged in that regard corresponding
to the area, e.g., four nodes in square shape in a square.

VI. IMPROVEMENTS

In the previous, we have a decrease in accuracy, due to
the greatly varying sound event receive times Our proposed
approach to solve this, is to take the known node positions into
account for the time synchronization. For the proof of concept,
we solve the mathematical average point to random points
distance in a square problem that is derived from the average
distance between two points problem [3] to mitigate the impact
in receive variation. In our simulation setup, the nodes are
symmetrically placed in three circles around the simulation
area center. Each circle corresponding to different values for
the mathematical average point to random points distance in
a square problem. We propose to solve this problem for each
node position, which makes the solution independent of node
placement. Subsequently, the average of all nodes that take part
in a specific time synchronization event is taken and subtracted
from each node. This determines the offset of each node in
terms of distance that has to be corrected for. The distance
offset can be converted into the time offset by introducing
the speed of sound propagation. It should be noted that the
speed of sound is dependent on several environmental factors
and introduces a new source of errors. However, the impact
of this error should be very small in comparison to the impact
of sound event distribution or sound event detection range.
The approach works well in a defined simulation area and
supports the proof of concept. For a time synchronization of a
subset of nodes or in an area with open borders, this solution
has to be improved in future work. Modeling sound event
recognition distances could solve this issue. Alternatively, the
use of bird call location algorithm could provide the exact
location of sound events and enable an offset shift for each
event and not only after several iterations.

For our proposed offset shift based on average distances,
we start the calculations with the formula for the euclidean
distance between two points

fp(x, y) =
√
(x− px)2 + (y − py)2, (1)

where fp(x, y) is the distance between the points and px and
py are the respective x- and y-coordinates of a point, we define
as our fixed point p, while x and y are the respective x- and
y-coordinates of the other point, we want to calculate the
distance to. For the mathematical average point to random
points distance in a square problem, we have to solve the
formula

d(ni) =
1

A

∫∫
S

fp(x, y)dxdy, (2)

where d(ni) is the average distance from the point of node i
to all points in the simulation area square, A is the simulation
area size, and S is the simulation area shape, i.e., the square.
This formula can also be applied to different simulation
area shapes, which simplifies the application of our proposed

solution in real use cases. However, sound event recognition
distances still have to be considered for a real use application.
In practice, we can also calculate the average over multiple
points, which can be iterated over the whole area or randomly
chosen. For our square shape, we calculate the simplified
formula

d(ni) =
1

mx ∗my
lim

δx,y→0

my∑
y=0

mx∑
x=0

fp(x, y), (3)

where mx and my are the respective x- and y-lengths of the
simulation area square. Subsequently, we need the average
of all d(ni) as offset reference, which we calculate with the
formula

davg(N) =
1

|N |
∑
nj∈N

d(ni), (4)

where davg(N) is the offset reference and N is the set of
nodes, which can be attributed to a specific synchronization
event. Finally, to determine the additional offset for each node
in this specific synchronization event, we calculate the formula

t(ni) =
davg(N)− d(ni)

c
, (5)

where t(ni) is the inverse offset that has to be added to node
i for the offset correction and c is the speed of sound.

With the shift of each time synchronization node offset by
the calculated additional offset, we get the results presented in
Fig. 4. As displayed, the separated offset groupings disappear,
which makes this a successful solution. Therefore, we provide
the proof of concept and the RBS-based and adapted time
synchronization method to facilitate the synchronization of
ARU audio data for bird species monitoring is feasible.
Currently, there are no established automated bird species
monitoring solutions, so the result evaluation depends on the
future application. To compare automated bird classification
results, it is only necessary to negate the constantly worsening
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Fig. 4: Offset analysis of our adapted time synchronization
approach (legend matches node placement, color for row, line
style for column)
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clock offset and an accuracy of approximately a second is
acceptable. This requirement is more than satisfied. Although
for a location determination, the results that roughly compare
to an additional location error of up to 10 meters are fairly
inaccurate. Especially, if the node distances of 15 meters are
considered. However, in a practical deployment, there would
be less nodes placed within such a deployment area. This large
amount is only meant for the time synchronization evaluation.
Furthermore, the bird location in current manual bird species
surveys is often only recorded as an approximation on a
map, if at all. Therefore, a comparable automated survey
would be possible with the achieved synchronization results.
Even so, for the aim of accurate bird localization the time
synchronization results have to be improved in the future.

For a comparison with traditional RBS [9], we also de-
termine the group dispersion (i.e., maximum pairwise error)
in our test simulation. This is displayed in Fig. 5. It can be
derived that initially the pairwise error is still high due to the
highly variable center point of the low number of reference
sound events, but decreases quickly with only very few refer-
ence sound events. The low pairwise error after only two sound
events is an artifact of a luckily mirrored reference sound
event and should disappear with more repetitions that were
not possible due to time constraints and will be done in future
work. It should also be noted, that group dispersion increases
with the number of nodes synchronized, especially with added
clock drifts, as can be derived from the box plot of the pairwise
errors. However, with a full deployment reducing the number
of synchronization nodes increases the synchronization hop
count between the node subsets and decreases accuracy in
that regard. The impact of this relation will be evaluated in
future work after a more in-depth evaluation in a realistic
deployment of this new proposed RBS-based and adapted time
synchronization method.

VII. CONCLUSION

This paper presents a time synchronization method of ARU
audio recording data for the example of bird species monitor-
ing. A simplified simulation setup for a proof of concept with
the TAWNS framework is specified. We discuss the complexity
due to environmental variables, clock drift, and BSS. Further-
more, we especially analyze impact and simplifications for the
aspects of clock drift and BSS. We show that the concept of
RBS can be applied to audio data with reference sound events,
but is impaired by the increased variation in propagation time
in comparison to radio transmission. Subsequently, we identify
the specific problem of separate synchronization convergences
of node groups and propose possible improvements by using
the node locations to estimate the convergence offsets. Finally,
we specify and implement a solution to counter this impact
in our simulation and discuss the successful results as well as
shortcomings for general application, which mainly originate
from the well-defined test area and sound event detection
ranges that are more open and complex in real world settings.

In future work, we would like to do a proper hardware
analysis of clock drifts to facilitate an evaluation with realis-
tically drifting clocks. Additionally, further improvements to
the time synchronization method need to be made to facilitate
implementation in real hardware. This then should be evalu-
ated in a real deployment. The ARUs without communication
modules are currently prevalent for many long-term, minimum
maintenance deployments, but ultimately the recordings are
collected and contribute to the monitoring and understanding
of our environment through the audio modality as is one
aim of the Internet of Sounds (IoS) research agenda [32].
The proposed approach may lead to an improvement of the
accuracy of acoustic monitoring with ARUs in the future.
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