
Extending Networked Mapping Research
Middleware Into the Browser Sandbox

Matthew Peachey
Graphics and Experiential Media Lab

Dalhousie Univeristy
Halifax, Canada
peacheym@dal.ca

Kyle Smith
Graphics and Experiential Media Lab

Dalhousie Univeristy
Halifax, Canada
kylesmith@dal.ca

Joseph Malloch
Graphics and Experiential Media Lab

Dalhousie Univeristy
Halifax, Canada
jmalloch@dal.ca

Abstract—Web-based technologies have seen rapid technologi-
cal improvements over the past several decades. This is especially
true as it relates to audio applications, with the specification of the
WebAudio API enabling users to deploy highly performant audio
projects to the web. Existing literature describes how mappings
are a critical component of end-to-end audio projects, including
Digital Musical Instruments, Internet of Sounds devices, and
more. Due to this, years of research efforts have produced
mapping middleware for the facilitation of establishing mappings
between sources and destinations. This paper discusses how the
libmapper [?] ecosystem is extended to support mapping to and
from a sandboxed browser environment. Establishing libmapper
connectivity on the web is achieved through websockets and a
backend daemon. In this paper, we discuss the implementation
details of binding libmapper to the web as well discuss potential
use-cases via user-story driven scenarios.

Index Terms—Mappings, Internet of Sounds, WebAudio.

I. INTRODUCTION

Web technologies have seen massive technical improve-
ments and community adoption in the past several years. The
audio domain is one such example of this, as browser-based
technologies have rapidly become more capable and perfor-
mant for handling audio tasks. For instance, the WebAudio
API [17] has enabled developers to build robust audio appli-
cations for the web, including Synthesizers, Audio Processors,
and more. This technology also provides a platform for fields
such as the Internet of Sounds (IoS) as well as the design and
development of browser-based Digital Musical Instruments
(DMIs).

Mappings are an essential part of creating end-to-end multi-
media experiences as they are the glue between various inputs
and outputs as well as what defines the behavior between
these endpoints. This is especially true in the context of audio
focused project as observed in the context of Digital Musi-
cal Instruments (DMIs), modular synthesis and many other
systems. Musicians and other creatives are often interested in
exploring novel ways to interact or perform with these types of
instruments that extend beyond the capabilities of traditional
music control protocols such as MIDI, and therefore creating
mappings is often a key part of their creative workflow. Due
to the importance of mappings as it relates to DMIs and
other end-to-end audio applications, a vast amount of academic
research has been focused on how people think about and

create mappings as well as the development of tools that are
designed to support and facilitate the mapping process [3],
[12], [24], [25].

This paper explores how to integrate libmapper, a popular
tool for creating & managing mappings across a network at
run-time, into modern web browsers and applications. While
the browser is a sandboxed environment (meaning there is
no option to communicate with external processes over TCP,
which is typically a requirement of libmapper) this paper high-
lights a new WebSocket based approach for binding libmapper
to the web. We present both a backend daemon, responsible
for managing the libmapper network and it’s devices, as well
as a front-end module for JavaScript that allows users to
quickly and easily associate HTML elements with libmapper
signals. By bringing libmapper to the web, we will support
both musicians working with web-based interfaces as well as
provide additional options for defining behaviours across the
rapidly growing Internet of Sounds research community.

Finally, we conclude the paper first with a discussion of
potential use-case scenarios and how our solution addresses a
user’s needs. Each of the scenarios are described using a user-
story and show how different users with unique requirements
are able to interact with our software. Finally, we discuss
future work for the project including both technical imple-
mentations and formal evaluations of the software.

II. RELATED WORK

A. Audio Applications in the Browser

Recent advancements in web-audio technology as well
as the flexibility of working with many different front-end
frameworks has resulted in the browser becoming a suitable
target for deploying audio applications. The WebAudio API
in conjunction with WebAssembly has enabled the creation
of many highly performant audio applications, including Syn-
thesizers, Digital Audio Workstations (DAWs), and more.
For instance, FAUST (a functional programming language
for developing audio projects [19]) allows users to target
the web directly [4]. Similarly, The Web Audio Modules
project has resulted in professional-grade audio plugins for
the web [5]. There are many other examples of audio projects
deployed to the browser, including Tube Amp simulators [11],
Musical Metaverse playgrounds [1], and more. Each of these



applications feature some aspect of user-adjustable parameters,
and thus providing an option for mapping capabilities may be
of interest to their respective communities.

The Internet of Sounds is an emerging field of research
focused on exploring how networks of sound things com-
municate sonic information [23] with each other. As this
field continues to mature, we expect adoption of browser-
based instruments to also grow. With the previously discussed
capabilities of the WebAudio API, the browser presents itself
as an excellent candidate for the deployment of sound things
that involve some degree of human interaction.

B. Digital Musical Instruments

Digital Musical Instruments (DMIs) have been an active
area of research for over twenty-five years. DMIs are defined
by Miranda & Wanderley as an instrument that is comprised
of a gestural controller and a sound production unit, with some
specified mapping strategy defining the relationship between
them [16]. There are many kinds of DMIs that have emerged
over the years, many of which with their own unique form
factors and use cases. Smart Musical Instruments (SMIs)
[21] are one type of DMI that places significant weight
on connectivity, usage of sensors, and on-board intelligence
and are one of the most common things found within the
IoS. Furthermore, Peachey & Malloch illustrate in their 2023
work how effective mappings are key to achieving the design
goals of SMIs [20]. With these items in mind, there is a
natural connection to be made between the Browser, DMIs,
Mappings and the IoS and the common tools and processes
these technologies may choose to rely on.

C. Mappings

Mappings are what define the behaviour between an input
controller and an sonic output. Mappings can either be ex-
plicit (where a programmer or musician defines the precise
relationship between each input and output) or implicit (where
the mapping is learned by examples, such as in the context of
a Machine Learning algorithm). In either case, methodically
considering mappings is critical when designing DMIs for both
users and their perspective audiences.

There are four commonly found topologies used when
creating mappings between sources and destinations as de-
scribed by Hunt [10] and depicted in figure 1. One to one
mappings, or direct mappings are the simplest of mapping
topologies, which makes it easier for both a performer and
audience alike to understand the relationship between input
and output, but may not provide as engaging of an experience
to the user as a non one to one mapping [9]. One to many
or divergent mappings are a single mapping source may be
mapped to several mapping destinations. Similarly, many to
one or convergent mappings are when several mapping sources
are influencing a single mapping destination. Finally, many
to many or complex mappings are when several mapping
sources are mapped to several mapping destinations using any
combination of the former three techniques.

Fig. 1. Each mapping topology serves a specific type of situations and certain
mapping middleware can enable users to decide which is best to use in order
to support their own personal use case.

Mapping Tools: As we have seen, literature makes it
clear that mappings are an essential part of Digital Musical
Instruments as well as many other multimedia systems and
performances. Due to the importance of mappings as well
as the many different paradigms for creating & managing
mappings, a plethora of research has gone into the design and
development of tools to facilitate the usage of mappings.

One such project is libmapper, which supports the collabo-
rative creation and management of run-time mappings between
a distributed graph of software and hardware objects. Soft-
ware developers and instruments designers can independently
declare “signals” that are either outputs (producers of real-
time data) or inputs (consumers of real-time data). Producers
can range from software GUIs to sensor data from connected
control surfaces, computer peripherals, DMIs, or IoT devices.
Similarly, consumers can range from a synthesizer parameter
to position of an object in a game engine. Signals are en-
capsulated into collections named “devices” based on their
own individual requirements and workflows; some devices
contain both input and output signals. Finally, users are also
able to associate metadata to signals and devices that may
be exposed to the entire mapping network to assist with
the mapping creation process. Once users have defined their
libmapper devices and signals, they are able to establish maps
between them at run-time using any of the previously dis-
cussed mapping topologies. Each map has an associated user-
editable expression as part of its metadata that defines the exact
relationship between connected signal; the expression syntax
supports FIR and IIR filtering, arbitrary combination functions
for convergent maps, and map-reduce across source signals,
vector elements, historical samples, and signal instances [13].

The libmapper ecosystem is constantly growing as research
and community adoption of the project continues. Currently
there is a large collection of programming languages (C,



C++, C#, Python, Java, Rust), environments (Max, Pure Data,
Processing, Touch Designer, Ableton Live [2]) and hardware
(Arduino/ESP32, the T-Stick DMI [14], [18], Probatio [6]) that
is already supported.

While there are certainly other mapping tools and research
software available for connecting aspects of DMIs (such as
[7], [22], [8], [15]), however in the context of this paper,
we will focus on the continued development of the libmapper
ecosystem.

III. IMPLEMENTATION DETAILS

Fig. 2. A system diagram visualization of how web-browsers can interact
with libmapper despite the sandboxed nature of modern browsers. A backend
daemon leverages libmapper’s C API to create devices and signals, establish
maps, and facilitate other libmapper tasks. A browser side JavaScript module
communicates with that daemon via both HTTP (for admin tasks) and
websockets (for both session initialization and real-time data transfer). The
entire communication process is depicted fully in Figure 3.

Bringing libmapper to the browser is not a simple task, as
browsers have significant restrictions compared to most other
platforms. Most significantly, libmapper relies on raw TCP
and UDP streams to communicate with peer devices. These
features are not supported from within sandboxed browsers
and therefore require an alternative approach. As a workaround
to these restrictions, we created a WebSocket and HTTP based
server to run in the background, providing access to the
libmapper graph through unrestricted channels.

Another challenge was creating appropriate front-end
JavaScript library to allow users to interact with libmapper in
a natural way. Simply providing the equivalent of the C API
wouldn’t feel idiomatic in JavaScript, and so a higher-level
wrapper was created, along with more specialized modules
allowing users to simply include a script for some use cases.

A. Backend WebSocket Server

Given the locked-down enviroment we have to work with
inside a web browser, a back-end bridge was needed to allow
sandboxed Javascript to interact with other networked libmap-
per devices. The server, referred to as ”mapperd”, exposes
most of the commonly-used API surface from the libmapper
C library with little logic of its own, save for automatic polling

of devices. Most actions are taken via an HTTP REST API,
however clients are required to keep a persistent WebSocket
connection active to facilitate real-time data updates for signal
values.

Figure 3 is an illustration of the communication flow
between browser and server. The first step is for the browser to
initiate a WebSocket connection and request a session token.
This model was chosen to allow multiple browsers or sites
to reuse the same server, while keeping their devices and
signals isolated from each other. The WebSocket connection
also serves as a stateful connection to the server, so in the
event of unexpected disconnection it can destroy all associated
devices appropriately.

The source code and additional information for the
mapperd backend component is available on GitHub via
https://github.com/libmapper/mapperd.

B. Frontend JavaScript Library

JavaScript is a multi-paradigm programming language with
a huge amount of preexisting software and a massive number
of daily users. Therefore, writing a new module for interacting
with libmapper in JavaScript that is both robust as well
as usable by a large audience is critical. Our JavaScript
module, libmapper.js, is comprised of two main classes,
namely LibmapperDevice and LibmapperSignal each
of which encapsulates functionality similar to that of their
respective libmapper C API counterparts but with communica-
tion with the larger libmapper network being handled through
mapperd as depicted in Figure 3.

The key aspects of our module is the ability for the user
to quickly instantiate a LibmapperDevice object which estab-
lishes a connection to the mapperd service automatically
using a series of asynchronous functions. One a device is fully
initialized, users can bind signals in a number of ways. First,
we allow users to bind signals through an addSignal()
function in JavaScript that takes an HTML element (typically
as found by ID) as a parameter. The function then automat-
ically registers that signal with the daemon and establishes
a websocket connection. The second method is to attach an
HTML attribute to a given element. For instance, if a user adds
the attribute mpr-signal-name to an input element, the
module will again automatically register that as a libmapper
signal and establish a websocket communication with the
daemon.

The source code and additional information for the
libmapper.js frontend component is available on GitHub
via https://github.com/libmapper/libmapper.js.

IV. USE CASE SCENARIOS

Allowing users to integrate libmapper into their browser-
first workflows will enable many different creative projects. In
order to better understand the flexibility and usefulness of our
software, we provide the following imagined scenarios. Each
scenario provides a brief look at the experience & requirements
of a potential user with their high level goals presented in
the form of a “user story”. Each scenario also includes a



Fig. 3. A visualization of the communication flow between libmapper.js (front-end) and mapperd (back-end) throughout the entire life-cycle of a session.
Note that a WebSocket connection is initiated at the beginning and persists for as long as libmapper.js is running on the front-end. Each of the other HTTP
& WebSocket communication channels are shown, and together these form the basis of our browser bindings for libmapper.

discussion about how bringing libmapper to the browser helps
a user achieve their goals and connect to a wider community
of users.

A. Mapping an External Input Controller to a Web Synth

A common use-case for mapping middleware is using it
to connect input controllers to parameters of a synthesizer.
This typically will enable users to achieve a high level of
control over their instrument or performance. With the rapidly
increasing capabilities of web-audio, synthesizers (as well as
other digital musical instruments and even entire Digital Audio
Workstations (DAWs)) are becoming common place on the
web. Due to these innovations, there may be a desire to map
existing input controllers to a browser-based audio project in
a typical DMI architecture.

Scenario: Alice is a musician with several years of ex-
perience of using custom input controllers as part of their
musical workflow. These controllers are typically used within
the DMI paradigm and thus Alice has experience using the
libmapper project as a middle ware solution for connecting
her input controller to an external synthesizer. Toby is a
friend of Alice’s who recently showed her a new browser-
based synthesizer they’ve been working on developing. During
the demo, Alice expressed interest in mapping some of her
libmapper-compatible input devices to parameters of Toby’s
new web-based synthesizer.

Alice’s requirements in this scenario are reflected in the
following user story:

As a musician exploring a new web-based syn-
thesizer,

I want to map my input controller to parameters
of that synthesizer,

So that I can explore new musical and performa-
tive ideas with this synthesizer.

In this scenario, we see that a musician hopes to estab-
lish a mapping between their input controller of choice and
a browser-based synthesizer. Together Alice and Toby are
able to quickly integrate libmapper connectivity to Toby’s
browser-based synthesizer. To do this, they download the
libmapper.js module and add it to their web-page’s home
directory. Toby shows Alice how there are already HTML
input sliders that are bound to parameters of their synth.
After initializing a libmapper device as shown in Figure 4
the duo is then able to simply grab these HTML elements
by their ID and instantiate signals by passing that element to
the .addSignal() function. Alice is then able to open a
mapping session using webmapper and the pair are able to
ideate on new musical ideas using familiar input controllers
mapped to Toby’s Synth. Therefore, thanks to the lightweight
browser module for libmapper, Alice’s user story is able to be
resolved quickly and using very few lines of code.

B. Mapping a Web-UI to External Multimedia Systems

The rapidly growing web-technology ecosystem has become
a primary way to develop GUIs for countless different use



Fig. 4. Binding an outgoing libmapper signal is as simple as calling the
.addSignal() function and passing the HTML element of interest as a
parameter along with the signal’s direction.

cases. This scenario is based on an experience web-developer
who is interested in designing a new GUI to map to synthesizer
parameters using web-technologies they’re already familiar
with.

Scenario: Aaron is a web-developer with over five years of
experience working with HTML & JavaScript in a professional
context. Recently Aaron has become interested in multi-media
performances, and is looking for a way to connect several
components he’s been working on developing. Aaron would
like to leverage his web-development skills to develop an input
controller with knobs, sliders, and other input options.

Aaron’s requirements for this scenario are reflected in the
following user story:

As a web developer interested in multimedia
systems,

I want to build a libmapper compatible UI in the
browser,

So that I can map my browser UI to parameters
of external multimedia systems.

In this scenario, we observe an experienced web-developer
attempting to build a browser-based interface to control pa-
rameter of other components of a larger system they are
working on. As depicted in Figure 5 this is easy to accomplish
using libmapper.js. Aaron is able to automatically bind
existing input elements to libmapper signals by using the
mpr-signal-name attribute. Then, when they initialize a
new libmapper device using the create function, these signals
will automatically be registered and a websocket connection
to the daemon will be established.

C. Browser to Browser Mapping

The first two scenarios have utilized libmapper to facilitate
mappings between a browser and non-browser in order to show
how libmapper can now handle mappings across the border of
a sandboxed browser. However, libmapper can also be used
to facilitate mappings between browser tabs or even a single
browser window if such a use case would be desired by a user.

Scenario: Sarah is a regular libmapper user that is interested
in using the middleware as a communication protocol across
browser tabs. After working with libmapper as part of several

Fig. 5. This JavaScript snippet automatically binds the value of several
HTML UI elements to their own respective libmapper signals. Each HTML
element with the mpr-signal-name attribute is bound to a signal with
relevant metadata (such as min/max values) being passed along to the signal
initialization process as well.

different DMI projects, Sarah is eager to explore how working
with libmapper in the browser can allow her to develop
new web-based projects using familiar tooling and mapping
paradigms. While Sarah’s project is exploratory in nature,
basing her work on existing mental models is important to
her creative workflow.

Sarah’s requirements for this scenario are reflected in the
following user story:

As an experienced libmapper user interested in
browser-to-browser communication,

I want to establish mappings between HTML
elements across two web-pages,

So that I can use a familiar toolkit to explore new
creative goals on the web.

In this scenario, we see that libmapper on the browser is
not exclusively designed to be used between browser and
non-browser mapping endpoints. Instead, it is a very straight-
forward process to realize the goals of Sarah’s user story.
Simply defining a set of libmapper signals (either incoming
or outgoing as demonstrated in the previous scenarios) either
within one-browser tab or throughout several windows allows
for libmapper connectivity to function as expected. Sarah’s can
then turn to her session manager of choice and establish and
ideate with several different mappings as she is used to doing
when working within a libmapper-based workflow.

V. CONCLUSION & FUTURE WORK

Mappings are a crucial aspect of many sound and audio ap-
plications. As web technologies in the audio domain continue
to progress, extending open-source interactivity middleware to
include browser-based software enables musicians and other
users to leverage the web for their own projects.

In this paper, we describe how the networked middleware
libmapper is extended to work in the browser despite the
limitations of that sandboxed environment. We explore several
scenarios that encapsulate various use-cases and show how
libmapper in the browser can address user requirements.

As the libmapper ecosystem continues to grow, there will
be several opportunities to explore future work related to
this project. Firstly, a formal evaluation of libmapper on



the browser will help us better understand how to represent
libmapper in a front-end JavaScript API that is approachable
to users. This evaluation shall include working with both
musicians and web-developers alike to ensure that the tools
fit their existing mental models and workflows. Evaluation
may take the form of a traditional user-study or rely on a
‘hackathon’ style of evaluation where users actually build and
perform with our tools. Furthermore, additional features that
are identified as a result of these formal evaluations will be
implemented. This work will benefit both musicians and the
research community alike through the continued development
of open-source mapping tools.

REFERENCES

[1] Alberto Boem and Luca Turchet. Musical metaverse playgrounds: ex-
ploring the design of shared virtual sonic experiences on web browsers.
In 2023 4th International Symposium on the Internet of Sounds, pages
1–9. IEEE, 2023.

[2] Brady Boettcher, Joseph Malloch, Johnty Wang, and Marcelo M Wander-
ley. Mapper4Live: Using control structures to embed complex mapping
tools into Ableton Live. In NIME 2022. PubPub, 2021.

[3] Brady Boettcher, Eduardo A. L. Meneses, Christian Frisson, Marcelo M.
Wanderley, and Joseph Malloch. Addressing barriers for entry and
operation of a distributed signal mapping framework. In New Interfaces
for Musical Expression (NIME’23), Mexico City, Mexico, jun 2023.

[4] Myles Borins. From faust to web audio: Compiling faust to javascript
using emscripten. In Linux Audio Conference (LAC-14), 2014.

[5] Michel Buffa, Antoine Vidal-Mazuy, and Quentin Plet. Web audio mod-
ules: Swiss knife for audio plugin developments on the web platform.
In Internet of Sounds 2023, 2023.

[6] Filipe Calegario and Filipe Calegario. Evaluation of Probatio 0.2.
Designing Digital Musical Instruments Using Probatio: A Physical
Prototyping Toolkit, pages 81–134, 2019.

[7] Rebecca Fiebrink, Daniel Trueman, Perry R Cook, et al. A meta-
instrument for interactive, on-the-fly machine learning. 2009.

[8] Angelo Fraietta, Oliver Bown, and Sam Ferguson. Transparent com-
munication within multiplicities. In 2020 27th Conference of Open
Innovations Association (FRUCT), pages 61–72. IEEE, 2020.

[9] Andy Hunt and Ross Kirk. Mapping strategies for musical performance.
Trends in gestural control of music, 21(2000):231–258, 2000.

[10] Andy Hunt and Marcelo M Wanderley. Mapping performer parameters
to synthesis engines. Organised sound, 7(2):97–108, 2002.

[11] Jerome Lebrun, Michel Buffa, and Jordan Sintes. From blues to rock to
jazz: three different web audio tube guitar amplifier simulator plugins.
In WAC 2022-Web Audio Conference 2022, 2022.

[12] Joseph Malloch, Stephen Sinclair, and Marcelo M Wanderley. Libmap-
per: (a library for connecting things). In CHI’13 Extended Abstracts on
Human Factors in Computing Systems, pages 3087–3090. 2013.

[13] Joseph Malloch, Stephen Sinclair, and Marcelo M. Wanderley. Gen-
eralized multi-instance control mapping for interactive media systems.
IEEE MultiMedia, 25(1):39–50, 2018.

[14] Joseph Malloch and Marcelo M Wanderley. The T-Stick: From musical
interface to musical instrument. In Proceedings of the 7th international
conference on New interfaces for musical expression, pages 66–70, 2007.

[15] Benjamin Matuszewski. A web-based framework for distributed music
system research and creation. AES-Journal of the Audio Engineering
Society Audio-Accoustics-Application, 2020.

[16] Eduardo Reck Miranda and Marcelo M Wanderley. New digital musical
instruments: control and interaction beyond the keyboard, volume 21.
AR Editions, Inc., 2006.

[17] MozDevNet. Web audio api - web apis: Mdn.
[18] Alex Nieva, Johnty Wang, Joseph Malloch, and Marcelo M Wanderley.

The T-Stick: Maintaining a 12 year-old digital musical instrument. In
NIME, pages 198–199, 2018.

[19] Yann Orlarey, Dominique Fober, and Stéphane Letz. FAUST: an
efficient functional approach to dsp programming. New Computational
Paradigms for Computer Music, pages 65–96, 2009.

[20] Matthew Peachey and Joseph Malloch. FAUSTMapper: Facilitating
complex mappings for smart musical instruments. In 2023 4th Inter-
national Symposium on the Internet of Sounds, pages 1–6. IEEE, 2023.

[21] Luca Turchet. Smart musical instruments: vision, design principles, and
future directions. IEEE Access, 7:8944–8963, 2018.

[22] Luca Turchet and Francesco Antoniazzi. Semantic web of musical
things: Achieving interoperability in the internet of musical things.
Journal of Web Semantics, 75:100758, 2023.

[23] Luca Turchet, Mathieu Lagrange, Cristina Rottondi, György Fazekas,
Nils Peters, Jan Østergaard, Frederic Font, Tom Bäckström, and Carlo
Fischione. The internet of sounds: Convergent trends, insights, and
future directions. IEEE Internet of Things Journal, 10(13):11264–11292,
2023.

[24] Johnty Wang, Joseph Malloch, Stephen Sinclair, Jonathan Wilansky,
Aaron Krajeski, and Marcelo M Wanderley. Webmapper: A tool for
visualizing and manipulating mappings in digital musical instruments.
In 14th International Symposium on Computer Music Multidisciplinary
Research, page 823, 2019.

[25] Travis West, Baptiste Caramiaux, and Marcelo Wanderley. Making
mappings: Examining the design process. In NIME’20-New Interfaces
for Musical Expression, 2020.


