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Abstract—Traditionally, drum source separation has been tack-
led using nonnegative spectro-temporal factorization methods.
Only recently, deep learning showed unprecedented performance
in separating five stems from a drum mixture, namely, kick
drum, snare drum, toms, hi-hat, and cymbals. The literature,
however, still lacks a thorough comparison of the techniques
readily available in the context of music source separation. In
this paper, we conduct a first benchmarking analysis of music
demixing models tailored for deep drum source separation. We
evaluate a range of state-of-the-art neural network architectures,
including HT-Demucs, MDX23C, and BS-RoFormer, trained us-
ing StemGMD, a large-scale dataset of isolated single-instrument
drum stems. Besides demonstrating that said architectures out-
perform the state-of-the-art method for drum source separation,
we discuss their strengths and weaknesses, giving insights into
their performance and ultimately offering valuable guidance for
researchers and practitioners willing to develop drum demixing
models for different applications, among which those related to
music making, personalized listening, and online music education
stand out.

Index Terms—deep learning, drum source separation, music
demixing.

I. INTRODUCTION

Drum source separation (DSS) is the task of separating
audio stems from a drum mixture [1]-[3]. With many potential
applications in the context of music production and music
technology, there is an ever-increasing demand for tools and
methods able to take advantage of DSS. Suffice to think of the
great impact that DSS may have on tasks such as re-mastering,
re-mixing, sampling, and automatic music and drum tran-
scription [4]. At the same time, DSS holds the promise of
being instrumental in many Internet of Sounds (IoS) [5] and
Internet of Musical Things (IoMusT) applications [6], such as
those concerning personalized user experience, online music
learning [7], and remote teaching [8]. Indeed, by complement-
ing Music Demixing (MDX), DSS could provide users the
possibility to personalize their listening experience on the fly
by remixing an incoming audio stream, or extracting stems
to isolate a particular drum pattern and facilitate the learning
process. While research on causal low-latency sound demixing
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is still in the early stages [9], [10], computing platforms have
developed to a point where deep learning models can now run
in real time on embedded audio devices [11]. Therefore, in the
future, MDX and DSS technologies may play a central role
in networked music performance applications [12], e.g., by
creating a dedicated virtual stage monitoring system for remote
musicians interacting over the Internet [13], [14]. It is worth
pointing out, in fact, that drum tracks are typically considered
as a single stem, and transmitting a single-channel audio
stream over a telecommunication network would avoid syn-
chronization issues and greatly reduce the required bandwidth
compared to the multi-channel case. Hence, downstream DSS
can be exploited at the receiver end to still be able to process
drum stems individually. Last but not least, many different
web-based services nowadays are offering users the possibility
to extract stems (e.g., vocals, bass, etc.) out of songs; while
MDX services are well established, those providing DSS
capabilities are still not widespread as further research is
required to reach satisfying results.

Over the past few years, DSS has been tackled employing
traditional signal processing techniques, such as Nonnegative
Matrix Factorization (NMF) [1], [15] or Nonnegative Matrix
Factor Deconvolution (NMFD) [2], [16], [17], obtaining, in
most of the cases, positive results that yet presented inter-
channel leaking and artifacts, hardly making them suitable
for high-quality music applications. Recently, led by the
remarkable performance of deep learning based methods in the
context of MDX, deep DSS (DDSS) has started to gather the
interest of researchers and practitioners. For instance, in [3],
the authors proposed LarsNet, the first published deep learning
model for accomplishing DSS. LarsNet is able to separate five
stems from a stereo drum mixture, i.e., kick drum, snare drum,
toms, hi-hat, and cymbals, obtaining unprecedented results
when compared to traditional methods.

Under the hood, LarsNet happens to be similar to Spleeter
by Deezer [18], i.e., a U-net based MDX model, posing
the question of whether and how other MDX architectures
can be applied to solve the task of DSS and what are their
performance when trained on a large collection of drum
mixtures. Thus, in this paper, we aim at bridging this research
gap offering, for the first time, a benchmark of state-of-the-art
MDX architectures trained for DSS. In particular, we consider



TABLE I
SUMMARY OF THE DEMIXING ARCHITECTURES CONSIDERED IN THE PRESENT STUDY.

Model # Subbands Domain Method # Params # Estimators
LarsNet [3] — Magnitude STFT Masking 9,828,680 5
MDX23C (4096) 4 CaC Synthesis 281,757,952 1
MDX23C (8192) 4 CaC Synthesis 288,045,568 1
HT-Demucs — Hybrid Synthesis 41,986,766 1
BS-HT-Demucs 4 Hybrid Synthesis 42,014,474 1
BS-HT-Demucs 8 Hybrid Synthesis 42,051,418 1
BS-Roformer 62 Complex STFT Masking 24,591,276 5

HT-Demucs [19], its Band-Split (BS) version, MDX23C [20],
and, finally, BS-RoFormer [21], i.e., the winner of the MDX
track in the 2023 Sound Demixing (SDX) Challenge [22], [23].
Some architectures are fed magnitude STFTs, others complex-
valued STFTs, and still others apply hybrid optimizations con-
sidering both STFTs and time-domain waveforms. Moreover,
from the output perspective, we distinguish between synthesis
models, i.e., methods that learn to directly produce the pre-
dicted stem waveform, and masking models, i.e., methods that
learn a soft mask, which, once applied to the mixture STFT,
yields an estimate of the desired drum stem. Moreover, we
consider both architectures that rely on a single estimator as
well as models that rely on N estimators, with N being the
number of drum stems. Here, the latter category turns out to
coincide with masking methods, since the corresponding MDX
models were not designed to stack multiple stems along the
channel dimension of their output tensors and, thus, yield them
all at once.

The DDSS models considered in the present study are
trained and evaluated on StemGMD [24], a corpus of isolated
drum stems presented in [25], which, to the best of our
knowledge, constitutes the only large-scale dataset available
in the literature for accomplishing DSS. Our analysis reveals
that MDX architectures, when applied to DDS, do not maintain
the relative performance they exhibit when applied to MDX.
Specifically, models operating in both the time and time-
frequency domains are, in general, characterized by a higher
Signal-to-Distortion Ratio (SDR) and appear to have better
generalization properties.

Ultimately, this work aims to provide researchers and prac-
titioners with valuable guidance for approaching drum source
separation, with new insights into the pros and cons of state-
of-the-art MDX architectures, paving the way toward a more
thorough and aware design of DDSS methods.

II. LARSNET

Proposed in [3], LarsNet is the first published deep learning
based method specifically tailored for DSS. LarsNet comprises
five U-Nets, each trained to separate one of five audio stems
from a stereo drum mixture, i.e., kick drum (KD), snare drum
(SD), toms (TT), hi-hat (HH), and cymbals (CY). In particular,
the TT stem includes tom-toms and floor toms; the HH stem
comprises both open and closed hi-hat hits; and the CY stem
encompasses all crash and ride cymbals.

Akin to Spleeter by Deezer [18], the U-Nets are fully-
convolutional and operate in the time-frequency domain. Each
network is fed a F' x T patch of the magnitude STFT of the
input stereo mixture, and outputs a stem-specific soft mask
through a Sigmoid nonlinearity. The time-domain stem signal
is then estimated by taking the inverse STFT (ISTFT) of the
element-wise product between the mixture STFT and the soft
mask thus obtained. We compute the STFT using a 4096-
sample Hann window with 75% overlap, and set F' = 2048,
thus zeroing out only the Nyquist coefficient. Additionally, at
inference time, we segment and batch input mixtures longer
than 7' = 512.

The neural networks are trained using StemGMD, a recently
released dataset of isolated single-instrument drum stems [24],
[25]. The training involves the minimization of a L'-loss
function between the magnitude STFT of the ¢th ground truth
stem X; € R2>EF *T and that of the masked mixture, i.e.,

ELarsNel = ”Xl - Mi © XHN (1

where © denotes the Hadamard product, Mi is the ith soft
mask, and X € RZ{F*T is the magnitude STFT of the
mixture, such that )Ei = 1\7[i ® X is the magnitude STFT
of the predicted stem.

III. Music DEMIXING MODELS

In this section, we provide a summary of the state-of-the-art
methods in the field of music source separation that will be
tested further ahead in the context of drum source separation.
The key features of each method are reported in Table 1.

A. MDX23C

Proposed for the 2023 SDX challenge, MDX track, leader-
board C, where it achieved 3rd place [23], MDX23C is a modi-
fied version of the more known KUIELab-MDX-Net originally
proposed for the 2021 MDX challenge [26]. Both MDX23C
and KUIELab’s models are, in fact, multi-source TDF-TDC-
U-Nets [27]. Introduced in 2020, the original TDF-TDC-U-Net
model was first used for singing voice separation [28].

As shown in Fig. 1b, it consists of a U-Net where all
convolutional layers are replaced with TFC-TDF blocks. In
such blocks, the output of a first time-frequency convolution
(TFC) block (normalization, pre-activation, 2D convolutions)
is fed to a stack of time-distributed fully-connected (TDF)
layers processing each frame of the latent representation along
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Fig. 1.
corresponds to HT-Demucs; (d) BS-RoFormer.

the axis corresponding to time with the same weights, before
being processed again by a second TFC block.

The former operations are performed on real-valued tensors,
where real and imaginary parts of the complex STFT are
treated as channels, a procedure known as “Complex as
Channels,” or CaC for short [28]. Furthermore, KUIELab-
MDX-Net includes subband processing as in [29], which
proved beneficial in many music demixing works [21], [30].
In particular, MDX23C implements a CaC to Channel-Wise
Subband (CWS) transformation module, where a tensor with
C channels, T frames, and F’ bins is evenly partitioned into K
subbands of size F//K, and rearranged such that the subbands
are stacked along the channel dimension which is now of
size CK. This way, CWS allows the model to learn different
weights for each subband.

MDX23C features five encoder blocks and five decoder
blocks. Each block either halves or doubles the number of
frequency bins and lets the number of channels grow by
128. As typical in classic U-Nets, shortcut paths connect
the feature maps at corresponding encoder-decoder levels via
concatenation. Finally, an outer skip connection feeds the
output of the convolutional frontend into the output of the
last convolutional block through element-wise multiplication.

In this work, we consider two MDX23C variants with
different time-frequency resolutions of its STFT frontend.
Namely, we set Nppr = 4096 and Ngpp = 8192 as the size of
the frame-by-frame Fast Fourier Transforms (FFTs). We train
both models employing a time-domain L'-loss and a multi-
resolution STFT loss using auraloss [31] such that
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Demixing architectures considered in our benchmark. (a) LarsNet; (b) MDX32C; (c) Band-Split HT-Demucs, which, without the dashed blocks,

where x; and Z; are the ground-truth and predicted stem
waveforms, and X; and X; are the ground-truth and predicted
magnitude STFTs, respectively, with s = 1,...,.S being the
multi-resolution index.

B. HT-Demucs

Hybrid Transformer Demucs (HT-Demucs) [19] is built
upon Demucs’ and Hybrid Demucs’ (H-Demucs) architec-
tures, originally proposed in [32] and [33], respectively. Fig. 1c
shows HT-Demucs, which, however, must be considered with-
out the dashed blocks; these will be discussed further ahead.
In particular, the original H-Demucs architecture comprises
two U-Nets: one operating in the time domain and the other
operating in the time-frequency domain. Each U-Net consists
of five encoder layers and five decoder layers with the two
innermost layers being shared between the two signal paths.
The output from the spectral branch is transformed back
via ISTFT before being combined with the output from the
temporal branch, thereby providing the model final prediction.

Building upon the previous model, HT-Demucs preserves
the outermost four layers from the original architecture while
substituting the innermost layers in the encoder and decoder
with a cross-domain transformer. This new architecture pro-
cesses in parallel the 2D signal from the spectral branch
and the 1D signal from the waveform branch. In contrast to
the original H-Demucs, which relies on thorough parameter
tuning to align temporal and spectral representations, the cross-
domain transformer allows greater flexibility. HT-Demucs is
trained using a time-domain L-loss, ie.,

LuT-Demucs = sz - i‘i||1 ) 3)



TABLE II
SIGNAL-TO-DISTORTION RATIO FOR EACH DRUM KIT.

Seen Drum Kits

Unseen Drum Kits

Brooklyn East Bay Heavy Portland Retro Rock SoCal Bluebird Detroit G. Motown R. Roots
LarsNet 17.71 18.24 16.93 18.62 18.54 18.94 18.63 17.1 15.53 16.79
MDX23C (Nppr = 4096) 19.98 19.45 19.44 20.57 20.34 20.31 19.87 17.62 13.9 16.2
MDX23C (NppT = 8192) 20.98 20.48 20.55 21.01 21.06 21.02 20.15 18.15 15.67 17.81
HT-Demucs 20.68 20.59 20.21 21.22 20.84 20.94 20.71 19.23 17.64 19.89
BS-HT-Demucs (4 Bands) 19.92 19.36 19.45 21.26 19.93 19.69 20.16 18.58 17.0 18.77
BS-HT-Demucs (8 Bands) 20.1 19.65 19.62 21.15 20.2 20.06 20.26 18.67 17.29 19.1
BS-Roformer 18.76 19.42 17.96 19.63 19.31 20.06 18.67 14.91 14.72 15.68

where x; and ; are the ith ground-truth and predicted stem
waveforms, respectively.

Finally, when writing [19], the authors envisioned to couple
HT-Demucs with subband processing as in [29]. In this work,
we implement CWS as discussed in Sec. III-A, and we name
the resulting model Band-Split HT-Demucs. This architecture
is depicted in Fig. 1c, where now, contrary to the original
HT-Demucs, the dashed blocks must be counted among the
layers. In this work, we consider the classic full-band HT-
Demucs architecture, as well as Band-Split (BS) variants with
four and eight subbands, respectively.

C. Band-Split RoFormer

Motivated by the success of Band-Split RNN [30], the au-
thors of [21] introduced Band-Split RoFormer, whose architec-
ture is shown in Fig. 1d. Most notably, the model achieved the
first place in the MDX track of the 2023 SDX Challenge [23].
Just like its RNN-based counterpart, BS-RoFormer uses a
band-split frontend to decompose the input STFT represen-
tation into nonoverlapping subbands. In particular. The input
STFT is first segmented into frequency bands of uneven size.
Then, the resulting time-frequency patches are fed to a stack of
dedicated Multi-Layered Perceptrons (MLPs) each consisting
of RMSnorm [34] and a fully-connected linear layer that
equalizes the number of latent features per band. The ensuing
representation is fed to a stack of alternating time-transformers
and subband-transformers. The former apply self-attention
across the time dimension, whereas the latter attend along
the subband axis. Furthermore, Rotary Positional Embeddings
(RoPE) [35] are applied by rotating queries and keys de-
pending on their position in the corresponding sequence. Our
implementation uses six interleaved pairs of subband- and
time-transformers with RoPE embeddings instead of twelve,
resulting in a total of 25 M trainable parameters, almost four
times less than the original MDX model [21]. The output of the
last transformer block is thus passed to an MLP stack tasked
with estimating a complex-valued mask that, when applied to
the source STFT via element-wise multiplication, allows for
reconstructing the target stem via ISTFT.

Similar to LarsNet, but differently from the other MDX
models described above, the method consists of a collection of
N BS-RoFormers, one for each stem, that were trained using
the same loss function as of MDX23C, i.c., (2). Nevertheless,
it is worth noticing that, in this case, XZ(-S) is the magnitude

STFT at resolution s of #; = ISTFT{M; @ STFT{z}},
while M; is the complex-valued soft mask predicted for the
ith stem.

IV. FROM MDX ARCHITECTURES TO DDSS MODELS

The architectures presented in the previous sections, with
the exception of LarsNet, were originally proposed for MDX
and not DSS. We trained all of them using StemGMD.

StemGMD [24], [25] contains audio tracks of nine percus-
sion instruments from a canonical acoustic drum kit, namely,
kick drum, snare drum, high tom, low-mid tom, floor tom,
open hi-hat, closed hi-hat, crash cymbal, and ride cymbal.
The tracks are synthesized from Groove MIDI Dataset’s MIDI
recordings [36] as a 44.1 kHz stereo wav files using ten
different Logic Pro X drum kits. In this work, following [3],
we reduce the number of classes to five by aggregating all
toms, all cymbals, and all hi-hats in three broader classes. In
doing so, we have also adopted the conventions introduced
by [3] that prescribed to use six out of ten drum Kkits for
training and testing (seen drum kits) and hold out four drum
kits exclusively for evaluation purposes (unseen drum Kits).
This leaves us with an eval session comprising 400 mixture
files (40 for each drum kit).

Differently from LarsNet, which used aligned stems, i.e.,
every training pair consisted of a mixture and a corresponding
stem coming from the same drumming performance, the new
DDSS models are trained by sampling random chunks of
isolated drums and creating the mixture simply by sum-
ming them. To do so, we discard every silence track from
StemGMD. This way, when mixing random chunks, we ensure
that all percussion instruments in the drum kit are represented,
at least with one hit per training sample. Discarding silence
leaves us with 4338 kick tracks, 5196 snare tracks, 4500 toms
tracks, 3900 hi-hat tracks, and 2526 cymbals tracks.

Additionally, we perform data augmentation on every
isolated clip using Spotify’s Pedalboard [37] and the
audiomentations Python library. These augmentation
methods outnumber those originally proposed for LarsNet:
audiomentations implements hyperbolic tangent distor-
tion and MP3 compression augmentation, as well as additive
white Gaussian noise corruption for hi-hat and cymbals. In
turn, Pedalboard allows us to apply random compression,
chorus, phaser, reverberation, bitcrash, and resampling in the
range of 16 kHz to 44.1 kHz. Moreover, we implement
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Fig. 2. Average Signal-to-Distortion Ratio (SDR) and standard error (SE)
of the DDSS models considered in the present study. Hatched bars indicate
methods that rely on multiple estimators.

channel swap' and polarity inversion with a probability of
50%, random gain variation in the range of 0.5 to 1.5, and
random panning according to a constant-power pan-rule with
a probability of 10%. Every target stem could be loaded as
the mixture of several randomly selected tracks of the same
instrument, possibly from different drum kits. This procedure
is limited to three files at a time, where the second is sampled
with a probability 20%, and the third with a probability of
10%. At each sampling step, the previous and new wave-
forms are averaged with uniformly distributed random weights
adding up to one. The remaining augmentation methods are
then applied to the resulting mixture.

We train each model on two Tesla V100 for about 50,000
iterations with variable gradient accumulation.”

V. RESULTS AND DISCUSSION
Regarding the evaluation, we compute the SDR as it is
particularly sensitive to inter-channel leakage artifacts, and is
the metric of choice for past MDX challenges [23], [26]. For
the ith stem, the SDR is given by

12
SDR,; = 10log, ”x”l‘zH +e @

i — Zill2 4 €’
where € = 107 avoids numerical problems.

All the methods outperform LarsNet, as it can be appre-
ciated by looking at Fig. 2, which shows the results of the
proposed benchmark. Bars represent, for each stem, the aver-
age SDR computed over every drum kit in the eval session.
Moreover, hatched bars refer to methods using N neural
networks in parallel as opposed to plain bars that represent
single-estimator models. As a first remark, it is interesting
indeed to note that the latter outperforms the former, i.e., the
methods in which every model has been trained specifically

INotice that, in StemGMD, instruments are panned to the left or right
depending on their typical position in a canonical drum kit [25].

2Audio examples and DDSS models are available online at https://
polimi-ispl.github.io/benchmark-ddss.

to extract one particular stem. For instance, HT-Demucs, on
average, performs better than the other methods, suggesting
that waveform synthesis, along with processing the signal in
both the time and time-frequency domains, is a promising way
to approach the task. In fact, we may think of drum hits as
having a broad spectrum due to their impulsive nature, which
makes the temporal resolution of onsets critical for achieving
satisfactory results. It might be indeed the wide frequency
response characterizing drums the reason why BS-HT-Demucs
shows poorer performance compared to HT-Demucs, and, in
general, band-split methods do not provide any evident benefit
when it comes to DDSS.

Table II breaks down the results into seen and unseen drum
kits. Notably, MDX23C with Ngpr = 8192 turns out to be the
best model on many seen drum kits (Brooklyn, Heavy, Retro
Rock, SoCal). HT-Demucs, while otherwise close-second,
outperforms MDX23C when it comes to processing unseen
kits. We may argue that, possibly due to the large number
of trainable parameters and the limited timbre variety of
StemGMD, MDX23C is prone to overfit and fails to generalize
as well as the smaller HT-Demucs model.

We deem the overall results very interesting, especially
because BS-RoFormer, although being the winner of the 2023
SDX Challenge, is not able to outperform the other models.
Many can be the causes contributing to such a downgraded
performance; we argue that this may be due to a combination
of reduced model capacity, and, once again, limited timbral
diversity characterizing StemGDM. These claims, however,
must be further investigated in future works.

VI. CONCLUSIONS

We presented a first benchmark of state-of-the-art MDX
architectures trained for accomplishing deep drum source
separation. We took into account the best performing methods
currently available in the literature, including top-ranking and
winners of past SDX Challenges, such as BS-RoFormer and
MDX?23C. We provided a comparison of methods operating
in the time-frequency domain and in both the time and time-
frequency domains, methods trained to estimate soft masks and
to directly synthesize stem waveforms, and again, methods
relying on several estimators and employing a single neural
network. Our analysis shows that all the state-of-the-art MDX
architectures involved in the benchmark are able to outperform
LarsNet, i.e., the state-of-the-art method for DDSS, and that
hybrid models tend to yield better results and have better
generalization capabilities. Going forward, we envision DDSS
as a key tool for augmenting and enriching the music making
process, while offering users a growing number of ways to
personalize their listening experience.
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