
Orthogonal Matching Pursuit based Linear
prediction for Real-time Packet Loss Concealment

Leonardo Severi
Department of Electronics and Telecommunications

Politecnico di Torino
Torino, Italy

leonardo.severi@polito.it

Abstract—We present an Orthogonal Matching Pursuit based
sparse linear prediction algorithm for real-time audio packet loss
concealment. The method iteratively selects non-contiguous lags
to model periodic signals, using efficient correlation updates and
combining Burg initialization with sparse autoregressive predic-
tion via optimized crossfading. Implementation on Raspberry Pi4
achieves an average of ∼ 245µs for model fitting and < 20ns per
sample prediction, suitable for networked music performance.

Index Terms—Packet Loss Concealment, Networked Mu-
sic Performance, Linear Prediction, Autoregressive, Orthogonal
Matching Pursuit

I. INTRODUCTION

This report presents a sparse Linear Prediction algorithm
for real-time packet loss concealment in audio applications.
This method selects a sparse subset of lags {d1, d2, ..., dk},
enabling modeling of periodic signals while maintaining com-
putational efficiency suitable for real-time constraints. The
algorithm combines a Burg model for initial sample prediction
with sparse autoregressive (SAR) for the main signal recon-
struction, ensuring smooth transitions through optimized cross-
fading.

II. ALGORITHM DESCRIPTION

A. Problem Formulation

Given a discrete signal st, we seek to model it as:

st =

k∑
i=1

ϕist−di
+ ϵt (1)

where {di}ki=1 are sparse lags and {ϕi}ki=1 are the correspond-
ing coefficients with ϵt being an error term. The key idea is the
iterative selection of lags based on their correlation with the
prediction residual and heuristics aimed at keeping the process
fast and accurate enough.

B. Iterative Lag Selection

The algorithm follows an Orthogonal Matching Pursuit
(OMP) approach [1] adapted for time series. The mathematical
procedure is shown in Algorithm 1.

Leonardo Severi’s PhD Programme is funded by the European Union
in the framework of the Resiliency and Recovery Plan (RRP), within the
NextGenerationEU initiative.

Algorithm 1 Sparse Autoregressive via Iterative Lag Selection
1: Input: Signal st, max iterations K, max lag L
2: Initialize: D = ∅, ŝt = 0, ϵt = st
3: for j = 1 to K do
4: Compute correlations:
5: for d = 1 to L do
6: if d /∈ D then
7: ρϵ,s(d) = E[ϵtst−d]
8: end if
9: end for

10: Select best lag:
11: dj = argmaxd |ρϵ,s(d)|
12: D = D ∪ {dj}
13: Re-optimize all coefficients:
14: Construct Rij = r|di−dj |
15: Construct ri = rdi

16: Solve Rϕ = r
17: Update residual:
18: ŝt =

∑j
i=1 ϕist−di

19: ϵt = st − ŝt
20: if stopping criterion met then
21: break
22: end if
23: end for
24: Output: Lags D, coefficients ϕ

C. Correlation Computation

The key insight is that the correlation between the residual
and a candidate lag can be computed efficiently:

ρϵ,s(d) = rd −
j∑

i=1

ϕir|d−di| (2)

where rl = E[stst−l] is the autocorrelation at lag l. This for-
mulation substitutes line 7, exploits the stationarity assumption
and avoids explicit residual computation (lines 18 and 19).

D. Coefficient Optimization

After selecting a new lag dj , all coefficients are re-optimized
by solving the Yule-Walker-like system with Tikhonov regu-
larization:

(R+ λI)ϕ = r (3)

where R is a j × j symmetric matrix with elements Ril =
r|di−dl|, r is a vector with elements ri = rdi

, and λ = 0.01·r0
provides numerical stability.

E. Hybrid Prediction Strategy

The algorithm employs a two-stage prediction approach:
1) Burg Model for Initial Samples: To ensure continuity at

packet boundaries, we compute a traditional Burg model of
order pb ≤ 8 using the precomputed autocorrelation values
(following the optimized implementation in [2]). This model
predicts the first mb = 20 samples:

ŝBurg
t =

pb∑
i=1

aist−i, t ∈ [1,mb] (4)

2) Sparse AR for Main Prediction: The sparse AR model
handles the remaining samples:

ŝSAR
t =

k∑
i=1

ϕist−di
, t > mb (5)

3) Crossfade Optimization: An optimal crossfade point c∗

is determined by minimizing the squared difference over a
sliding window:

c∗ = argmin
c

w−1∑
i=0

(ŝBurg
c+i − ŝSAR

c+i)
2 (6)

where w is the crossfade window size. The final signal
combines both predictions using smooth fade curves. The
implementation uses w = 12 for Burg-to-SAR transitions and
w = 32 for right boundary crossfades, with smooth weighting
functions.

III. THEORETICAL JUSTIFICATION

A. Orthogonality Property

The lag selection criterion ensures that each newly selected
lag has a component orthogonal to the span of previously
selected lags. If X = [st−d1

, ..., st−dj−1
] represents the matrix

of selected lag vectors and e = y −Xϕ is the residual, then
from the normal equations:

XTe = 0 (7)

A new lag st−d with ⟨st−d, e⟩ ≠ 0 must have a component
⊥ span(X), guaranteeing that it brings new information.

B. Relationship to OMP

The algorithm is equivalent to OMP applied to the dictio-
nary D = {st−1, st−2, ..., st−L+1}, with L being the maxi-
mum count of computed lags. The correlation maximization
step corresponds to finding the dictionary atom most correlated
with the residual, while the coefficient re-optimization ensures
the optimal projection onto the selected subspace.

IV. COMPUTATIONAL COMPLEXITY

The algorithm’s efficiency stems from computing the op-
timization function without the need to explicit compute the
error vector.

• Autocorrelation computation: Θ(Nlog(N)) per iter-
ation using a Fast Fourier Transform (FFT) - based
approach.

• Lag Selection: O(kL) for k iterations
• System solution: O(k3) for k systems
• Total complexity: O(k2L+ k4 +Nlog(N))

For typical applications with k ≤ 5 and L = 1024, and
N = 2048 being the considered window size.

V. IMPLEMENTATION CONSIDERATIONS

A. Stopping Criteria

The implementation uses several criteria:

• Maximum of k = 3 non-contiguous lags
• Minimum correlation threshold: |ρ| > 0.2 · r0
• Early termination if single-lag correlation exceeds 0.55
• Skip regions around selected lags (±80 samples)

B. Signal Conditioning

1) Compression and Limiting: To prevent instability, pre-
dicted samples undergo soft compression:

• Linear region: |s| < 1.01 ·max(|shist|)
• Compression region with smooth polynomial transition

using a cubic spline
• Hard limiting at 1.5·max(|shist|) with gradual decay when

triggered the first time

C. Model Fitting Heuristics

The current implementation uses:

• L1-norm normalization of coefficients when
∑

i |ϕi| < 1,
sacrificing accuracy in favor of preserving signal ampli-
tude.

• A shock detection mechanism that monitors the vari-
ance ratio between consecutive windows of 512 samples,
limiting the history when log10(σ

2
i /σ

2
ref) ≥ 1, where

σ2
ref is the variance of the most recent 512 samples

(closest to the lost packet) and σ2
i is computed for each

preceding window moving backward, thus preventing
model contamination from abrupt signal changes such as
note onsets or transients.

VI. PRELIMINARY PERFORMANCE ANALYSIS

A. Qualitative assessment

For note onsets that express a strong periodicity, the algo-
rithm usually stops after selecting a single lag, which boils
down to a form of pattern replication (per section V-C).
However, this is perceptually transparent, as the signal is
prolonged according to its periodical form (see fig. 1).

Fig. 1. Example showing single-lag SAR prediction (pattern replication) with
Burg initialization on a piano signal

B. Computational Efficiency

The implementation achieves sub-millisecond execution
through:

• Optimized C++ code, using float32 as main numerical
type.

• Efficient computation of FFT-based autocorrelations (use
of the FFTW library [3] with precomputed wisdom)

• Single-core elaboration with no need for synchronization
mechanisms

• Vector operations through the Eigen3 library [4]
Preliminary analyses conducted on a Raspberry Pi4 (stan-

dard ARM64 hardware) with N ≤ 2048, L ≤ 1024, k ≤ 3
show:

• Model fitting: ≈ 245µs average
• Sample prediction: < 20ns per sample

REFERENCES

[1] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit:
recursive function approximation with applications to wavelet decompo-
sition,” in Proceedings of 27th Asilomar Conference on Signals, Systems
and Computers, pp. 40–44 vol.1, 1993.

[2] K. Vos, “A fast implementation of burg’s method,” OPUS codec, 2013.
[3] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”

Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[4] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org,
2010.

