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Abstract—Real-time applications, such as Networked Music
Performance (NMP), typically employ best-effort protocols to
minimize latency; however, this may cause buffer underruns at
the receiver side. Packet Loss Concealment (PLC) techniques are
employed to cope with this issue. While a few PLC algorithms
have been proposed over the years, they usually assume that
the past buffer always features valid packets, which is usually
not the case in real life scenarios. In this technical report, we
present a novel method to address the increasing divergence of
the next prediction when the past buffer features packets that
are prediction themselves. We iteratively train several instances
of our model, and for each iteration an increasing number of
packets in the buffer is dropped and concealed with a surrogate
model, ensuring robust concealments even when the past buffer is
lossy. Additionally, we employ use Temporal Feature-Wise Linear
Modulation (TFiLM) as a conditioning strategy to leverage the
positional information of concealed packets in the buffer.

Index Terms—Networked Music Performance, Packet Loss
Concealment, Deep Learning, Convolutional Neural Network

I. INTRODUCTION

The widespread adoption of the Internet has driven the
development of a wide array of interactive multimedia appli-
cations, including those requiring real-time interaction. While
Voice over IP (VoIP) applications for video conferencing are
now well-established, Networked Music Performance (NMP)
applications—allowing geographically-separated musicians to
perform together in real-time—have experienced limited adop-
tion. Among the challenges hindering NMP adoption, latency
is particularly demanding. As indicated by studies on psychoa-
coustics, end-to-end latency should not exceed 20-30 ms [1].
This constraint imposes strict requirements on application
design, such as addressing packet loss or excessive delay.

To account for missing network packets, NMP applications
typically implement a jitter buffer at the receiver side, but the
possibility of buffer under-runs has to be considered, as they
produce annoying artifacts in the audio playback. To address
this problem at the receiver side, applications feature Packet
Loss Concealment (PLC) algorithms. Over time, many PLC
techniques have been proposed, ranging from naive data-filler
to more refined techniques that can interpolate the missing
information based on past samples [2] [3] [4].

Recent advancements in Deep Learning (DL) have led to its
adoption in many audio-related tasks. While many attempts
have been made to adopt deep learning-based methods to
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develop PLC algorithms tailored for speech signals [5] [6] [7],
there has been limited exploration of such algorithms for
musical audio streams. Typically, PLC models use a buffer
of past packets as input to obtain a prediction of the fol-
lowing packet. However, packet losses usually come in burst
of multiple consecutive lost packets. Consequently, a DL
model often relies on a buffer composed largely of previously
predicted packets. This recursive use of predictions amplifies
error accumulation, causing subsequent predictions to deviate
increasingly from the ground truth.

In this technical report, we define our entry for the IEEE-1S?
2025 PLC Challenge presenting a method to train a DL PLC
model robust to bursts of consecutive lost packets. Specifi-
cally, we introduce an iterative training approach featuring a
surrogate model that simulates packet predictions during data
loading. Additionally, we apply a conditioning strategy that
enforces the model’s awareness of the positional context of
lost packets during inference.

II. METHOD
A. Challenge specifications

As from the specifications of the challenge, the setup
features a collection of 16-bits audio tracks sampled at 44.1
kHz. For each track, a packet trace in the form of binary mask
is provided, where each digit represent whether a 512 samples
packet is lost. The traces were sampled from two different
subsets:

o subset I features bursts of at most 6 packets;
o subset 2 features bursts of at most 16 packets.

The traces were sampled from subset 1 with high probabil-
ity, and from subset 2 with low probability.

Given the above specification, any DL model running on
the blind test set will likely have to perform the inference pass
on consecutive packets, or a few valid packets away from the
next lost packet. This is detrimental to the performances of the
model, as the packets in the past buffer are typically assumed
to be all valid at training time, which does not represent what
happens in the real scenario and in the challenge. Additionally,
the more previously concealed packets are in the buffer at a
given time ¢, the more the prediction for packet at time ¢ + 1
will diverge from the ground truth. Hence, DL PLC models



Fig. 1. Detail of the pre-processing phase of the past buffer of a datapoint
during the training of model P». Squares with solid borders represent packets
in the past buffer. It is assumed that the binary mask has already been
generated and applied to the past buffer. The surrogate model P; slides
through the past buffer and produces concealments for each of the lossy
packets. In this picture, the number of packets in the past buffer k has been
limited to 4 for the sake of conciseness.

should be robust to the presence of previously concealed
packets in their input buffer.

In the following, we present a method to train a robust
PLC model. We use PARCNet [8] as a backbone model.
Specifically, we use the most recent revision of it, which is
the baseline for the challenge'.

B. Iterative training with surrogate model

As from the challenge specifications, our goal was to train a
model robust to past buffers with up to IV previously concealed
packets.

Hence, we train N instances of the our model iteratively.
Each instance P, is trained with n concealed packets within
the context buffer, and the model F, is the baseline PARCNet
model. At data loading time, for each example in the dataset a
binary mask sampled from a uniform distribution with n ones
and k — n zeros, where n is the number of lost packets in
the mask and k is the total length of the past buffer. Then,
the past buffer is zeroed according to the binary mask and
the lossy buffer is concealed running the PARCNet algorithm
using a surrogate model, that is the model trained at the
previous iteration P,,_;. The process is illustrated in Figure 1.
By training N models progressively increasing the number of
previously concealed packets in the buffer, we allow each P,
model to adapt to longer bursts.

We used £ = 8 as past buffer size as from the baseline
PARCNet model. A high-level description of the training
framework is presented in Algorithm 1.

Uhttps://github.com/polimi-ispl/2024-music-plc-challenge/tree/main/
parcnet-is2

Algorithm 1: Iterative training with surrogate model

Input: Baseline model: P
Input: Number of lossy packets: NV
Output: Trained models: [P, ..., Py]

for n < 1 to N do
/I Excerpt of the regular PARCNet training

procedure
repeat
/I x; is the past, y; is the ground truth
z;, y; < loadDatapoint();

z;, y; < getLossyPacketsMask(m;);
Z; + getLossyPastFromMask(z;, m;);
Z; < fillLossyPast(z;, P,_1);
restOfTrainingLoop(Z;, ¥;s Prm)
until convergence;

return [P1,...,PN]

C. TFiLM conditioning

In order to exploit the information of which packets within
the past buffer are valid and which are previously con-
cealed, we employ Temporal Feature-Wise Linear Modulation
(TFiLM) [9]. TFiLM applies an affine transformation to the
feature activation maps within the hidden layers of the model.
The parameters of the affine transformation ~; and (; are
inferred by a Recurrent Neural Network (RNN) from a condi-
tioning sequence, that is the binary mask of lossy packets. The
RNN predicts B pairs of 7; and §; parameters, where each
pair 7,0 < % < B of parameters is applied to the i-th layer
of the NN. The affine transformations embed the temporal
information of the position of the previously concealed packets
in the past buffer and ultimately force the model to rely on
valid packets.

We define a TFiLM generator NN with a Gated Recurrent
Unit (GRU) layer with 128 hidden units, followed by two
parallel fully-connected layers for the v; and /3; parameters.
The TFiLM generator runs before the main body of the NN
of PARCNet and is trained jointly with it. Hence, the number
of parameters of the model is increased to 700k with respect
to the 416k of baseline PARCNet.

D. Dataset

We train our models on the Medley Solos DB dataset [10],
which contains close to 18 hours of solo instrument recordings.
This collection spans a diverse range of eight instruments:
clarinet, distorted electric guitar, female vocals, flute, piano,
tenor saxophone, trumpet, and violin. The Medley Solos DB
consists of 21,571 audio clips stored as PCM wave files,
each sampled at 44.1 kHz with a single (mono) channel and
a bit depth of 32 bits. Every clip has a uniform length of
2,972 milliseconds, which corresponds to 65,536 discrete-time
samples.
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Fig. 2. High-level illustration of the PARCNet architecture enriched with
TFiILM. On the bottom left, we have the past buffer - green represent
valid, yellow represent concealed - fed to the main body of the PARCNet
architecture. On the top left, we have the binary mask of previously concealed
packets within the past buffer, which is fed to the RNN to obtain the
conditioning parameters y; and [3;. The i-th pair of conditioning parameters
is applied to the feature activation maps of the i-th block of all the the

Dilated Residual Block of the Encoder and Decoder and GLU blocks of the
Bottleneck.

III. EXPERIMENTS

As from the iterative training procedure described, we
trained N = 2 models, where each model P, is an instance of
PARCNet enriched with TFiILM. We trained each model until
a plateau in the validation loss is reached using Early Stopping.
All hyperparameters are the same as Baseline PARCNet. All
the training experiments were run on a 64 bit Linux machine
running Ubuntu 22.04.3 LTS. The machine was equipped with
an Intel(R) Core(TM) i9-10940X 3.30GHz CPU with 2 threads
per core and 14 cores, 200GB of RAM and two GPUs, namely
an NVIDIA GeForce RTX 4090 and an NVIDIA GeForce
RTX 3090, both featuring 24GB of dedicated VRAM. All the
experiments were performed with Python 3.11.5 and CUDA
12.2. All the random generators were fed with the same seed
(42).

IV. CONCLUSIONS

In this technical report we described our entry to the IEEE-
IS? 2025 PLC Challenge. The method features an iterative
training procedure, where the buffer of past packets is altered
so that progressively more and more packets are concealed by
a surrogate model. Additionally, the model is conditioned with
TFiLM, in order to exploit the position of corrupted packets in
the buffer to give more importance to valid packets. Adding
the TFILM module inevitably has a negative impact on the
inference time, possibly undermining real-time capabilities of
the algorithm. Many solutions from the domain of TinyML
can be employed - e.g., network pruning, post-training weight
quantization and knowledge distillation - howere, their appli-
cability to the model is left for future studies.
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