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Abstract—Recent advancements in deep learning paved the
way to novel approaches to the problem of Packet Loss Conceal-
ment. However, deep neural networks may have large inference
times and therefore violate the strict temporal requirements of
PLC. A promising avenue lies in the exploration of the loss
function used to train the network, as loss functions have direct
impact of the latent representation learned by the model during
the training process without any additional cost at inference time.

In this work, an attempt was made to define a perceptual loss
function, i.e. a loss function that allows the model trained with it
to have downstream performances that correlate with the human
evaluation. The proposed Loss Function reweights the frequency
axis of the difference between the magnitude spectrogram of the
target and the prediction, allowing the model to learn a better
representation of the frequency content and yield higher quality
concealments.

Index Terms—Internet of Musical Things, Networked Music
Performance, Packet Loss Concealment, Deep Learning

I. MODEL

A. Architecture

In this submission we are using PARCNet, the model
proposed in Mezza et al. [4], as a backbone architecture. We
are changing the size of the input tensor in order to match
the different packet length, which is 512 samples for this
challenge.

B. Loss function

In this submission we developed a novel perceptually-
motivated loss function, the Tilt Loss, named after the Tilt
filter equaliser.

1) Intuition: The underlying motivations for the design of
this loss are rooted in empirical observations on the predic-
tion data from the PARCNet model. The analysis of such
observations highlighted the fact that the concealed signal
was unbalanced in the reconstruction of the frequency content,
as frequencies in the low and the mid-frequency range were
more accurately reconstructed, while frequencies in the high
range were noticeably more inaccurate. This behaviour can be
clearly seen from the spectrograms of the concealments and
the waveforms. In other words, the model trained with the
PARCNet loss has less sensitivity on the mid and low-end
than the high-end. At the same time, the perceptual quality
of the model is far superior in the higher-sensitivity low-mid

frequency range than in the less-sensitive high range. Hence,
it arose the idea of rebalancing the frequency spectrum in
favour of the high-frequency range in order to push the model
to concentrate thoroughly on learning a better representation
of the spectrum high-end. This rebalancing is defined as a
reweight mask applied to the frequency bins of the MAE of
the predicted and the ground truth, hence acting as an upward
tilt filter.

2) Definition: The loss is defined as follows:
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The spectral adaptive reweighting mask is defined through
the Tilt frequency reweighting function ϑ, which is defined at
a high-level as follows.

ϑ
(
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)
:= 1− butter
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DFT(x(i) ⊕ y(i))

]
(2)

where ⊕ is the concatenation operator and butter is a low-
pass filter designed as a butterworth filter.

3) Design discussion: When designing the loss, a number
of different reweight strategies were considered. In the end,
we chose a so-called spectral adaptive reweighting strategy in
order to make the reweighting curve dynamic, meaning that
the reweight mask is adaptive with respect to the frequency
content of the context. This is crucial for musical audio, as
the frequency content of the signal varies a lot depending on
the instrument, style or even individual passage.

a) Tilt spectral adaptive reweighting mask computation:
The procedure is summarized in Algorithm 1.

The DFT is computed with a FFT computed with a window
size of the context length plus the packet length and a FFT
size of the next power of 2 of the window size, that is
2⌈log2(win length)⌉. The Mel scale transformation is computed
with a 128 Mel filterbank. The transformation to DB scale
is computed as 20 ∗ log10 (mel spectrum + ϵ) + c, where
ϵ = 10−7 is a constant to prevent numerical errors on the
logarithm computation and c = 80 is a constant to translate
the values of the curve and simply the following normalisation.
As a low-pass filter, a Butterworth filter of order 5 is used and
the cut-off frequency 50. In order to prevent a downward ramp
at the beginning of the mask, the mask is applied a left padding



(a) Normalized Mel spectrum before the filtering. (b) Normalized Mel spectrum after the filtering.

Fig. 1: The effect of the low-pass filtering on the Tilt spectral reweighting mask.

Algorithm 1: Tilt spectral adaptive reweighting mask
ϑ computation.

Data: Context x(i), Ground truth y(i), shape of the
spectrogram shape

Result: Spectral reweight mask ϑ

spectrum ← DFT(x(i) ⊕ y(i)) ;

mel spectrum ← MelFilterbak(spectrum) ;

db spectrum ← AmplitudeToDB(mel spectrum) ;

mask ← LowPassFilter(db spectrum) ;

mask ← 1−mask ;

mask ← Normalize(mask, [0, 1]) ;

ϑ← mask.Expand(shape) ;
return ϑ

repeating the first value. The size of the left padding is equal
to 50. The Butterworth designed was performed with SciPy [6]
with the scipy.signal.butter module and applied with
the scipy.signal.lfilter.

The impact of the low-pass filtering on the resulting curve
can be seen from Figure 1.

II. DATA

The model was trained on the Bach Cello Suite dataset [1],
originally introduced by Chris Chafe. It consists of several
hours of recordings of excerpts taken from the Back Cello
Suites corpus. The instrument feature in this dataset is the
violoncello, which produces mostly monophonic sound with
low attack and high decay and release. The recordings were
captured across several days and they are unedited, featuring
pauses, artefacts and environmental noises, hence representing
a typical rehearsal scenario. The dataset is available online1.

In order to prepare the audio tracks to be fed to the model,
they should be packetised, i.e. split into fixed-length packets.

1https://ccrma.stanford.edu/∼cc/som/bachCello/

The packet length, in compliance with the challenge require-
ments, is set to 512 samples, which corresponds to around 11
ms of audio at the target sampling rate of 44.1kHz. Audio
recordings usually feature millions of samples, which would
result in prohibitive disk and memory requirements. Hence,
in order to reduce the overall dimension of the problem, a
packet skip factor is defined. The packet skip factor acts as
a lag variable that indicates the distance in samples between
the index of the first sample of a packet and the index of the
first sample of the following. We used a packet skip factor
of 2, meaning that we are using ∝ 50% of the total available
packets.

III. TRAINING EXPERIMENTS SETUP

All the training experiments were run on a 64 bit Linux
machine running Ubuntu 22.04.3 LTS. The machine was
equipped with an Intel(R) Core(TM) i9-10940X 3.30GHz
CPU with 2 threads per core and 14 cores, 200GB of RAM
and two GPUs, namely an NVIDIA GeForce RTX 4090 and
an NVIDIA GeForce RTX 3090, both featuring 24GB of
dedicated VRAM. All the experiments were performed with
Python 3.11.5 and CUDA 12.2, leveraging the deep learning
framework PyTorch [5] and its convenient wrapper Pytorch
Lightning [2]. All the random generators were eeded with the
same seed (42).

The RAdam optimisation algorithm [3] with β1 = 0.5 and
β2 = 0.9 is employed as in the papepr. Each model was trained
for 100 epochs with a batch size of 128 datapoints per batch.
The learning rate η was set to 10−3 and was decayed by a
factor of 0.1 when the validation loss did not improve for a
number of epochs; this patience value was set to 10.
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