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Abstract—This technical report addresses the issue of packet
loss concealment (PLC) in Networked Music Performance (NMP)
by presenting an improved version of our bin2bin [1] model,
used to participate in the 2024 edition of the IS2 Music PLC
Challenge. The approach combines Linear Predictive Coding
(LPC) with a bin2bin Generative Adversarial Network (GAN).
Unlike existing methods such as PARCnet, which estimate the
LPC error using an ANN, our approach uses the LPC-generated
audio to condition a generative bin2bin convolutional model for
spectrogram inpainting, trained under the GAN paradigm. The
report discusses the architecture and compares it to the previous
version, highlighting its improvements in restoring the original
audio quality. The solution is capable of running in real-time and
in a fully causal setting, in compliance with the 2025 IS2 Music
PLC Challenge requirements.

Index Terms—Packet Loss Concealment, Generative Adversar-
ial Network, Linear Predictive Coding

I. INTRODUCTION

Networked Music Performance (NMP) depends on high-
quality audio transmission with low latency to ensure a smooth
and immersive user experience. Nonetheless, the inherent vari-
ability of network conditions frequently results in packet loss,
which can significantly impair audio quality and disrupt the
performance. Therefore, effective Packet Loss Concealment
(PLC) is essential to preserve the integrity and quality of the
transmitted audio in NMP scenarios.

Conventional PLC approaches, including interpolation and
packet repetition, often fall short of meeting the stringent
quality requirements of NMP. While more sophisticated tech-
niques have been explored since the 1990s [2], they continue to
face challenges in achieving high audio fidelity while keeping
latency low.

In this technical report, we propose an improved version of
a PLC architecture that was previously proposed at the 2024
IS2 PLC Challenge [1]. The previously proposed architecture
reached second place after the PARCnet baseline, motivating
the authors to seek further refinements that could potentially
lead to surpassing the baseline. As in the originally proposed
method, we integrate Linear Predictive Coding (LPC) with
a Generative Adversarial Network (GAN). The GAN stems
from the bin2bin inpainting architecture [3], [4], but is now
improved to be lighter in terms of computational cost. Further
adjustments on the LPC contribute to making the method
feasible in real-time.

The baseline system provided by the challenge organizers
is a modified version of PARCnet [5], which also uses a linear

predictor (LP) in conjunction with an artificial neural network
(ANN). In PARCnet, the ANN is designed to estimate the LPC
error to refine time-domain residuals. In contrast, our approach
employs a bin2bin GAN to generate audio conditioned on the
preliminary signal estimate from the LP model. This strategy
combines the predictive efficiency of LPC with the generative
power of GANs to reconstruct lost packets with high fidelity.

II. METHOD

The objective of the challenge is to conceal one or more
lost audio packets of very short duration (512 samples at a
44 100 Hz sampling rate). It is assumed that the positions of
the losses are provided in advance via a binary mask.

The proposed concealment method is depicted in Figure 1.
When a loss is detected, the system must generate a plausible
reconstruction in a fully causal manner, with no future context
(i.e., no lookahead). Assuming that all preceding packets are
valid (even if some have been reconstructed in prior steps),
the system begins by performing an inpainting hypothesis
using Linear Prediction (LP). The LP model is adapted to
estimate p = 256 coefficients from a context consisting of the
7 most recent consecutive frames (3584 samples, or 81.3 ms).
It is tasked with generating a segment twice the length of the
missing portion, i.e., 1024 samples. This approach supports
future sample prediction, which is beneficial for a potential
crossfade step, and it also enhances the bin2bin network’s
performance by positioning the corrupted region slightly away
from the context edge.
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Fig. 1. Illustration of the proposed inpainting method.

A. bin2bin-v2 Model
Our bin2bin-v2 architecture leverages the U-Net design,

incorporating skip-connections between homogeneous layers.



The U-Net consists of a convolutional encoder that downsam-
ples the input spectrogram and a decoder that upsamples the
latent representation. With respect to our previous model, the
U-Net CNN employs depthwise separable convolution layers,
to obtain savings in terms of memory footprint and learnable
parameters.
Table I compares the original bin2bin U-Net employing regular
2D convolutions and the novel bin2bin-v2 U-Net. The compu-
tational cost savings are remarkable, though the network can
maintain a high complexity, which is necessary to obtain the
best performance.

TABLE I
COMPARISON BETWEEN ORIGINAL (bin2bin) AND DEPTHWISE-SEPARABLE

(bin2bin-v2) GENERATOR ARCHITECTURES.

Metric Original Depthwise-Separable

Total Parameters 54 408 385 1 152 449
Trainable Parameters 54 408 385 1 152 449
Total Mult-Adds (G) 17.84 1.10
Input Size (MB) 0.26 0.26
Forward/Backward Size (MB) 56.43 112.72
Parameters Size (MB) 217.63 4.61
Estimated Total Size (MB) 274.33 117.59

The encoder consists of five convolutional stages, with the
number of kernels progressively increasing as [16, 32, 64,
64, 64]. Each stage applies a depthwise convolution with
4 × 4 kernels and stride 2 for downsampling, followed by a
pointwise projection using 1× 1 kernels, batch normalization,
and a Leaky-ReLU activation. At the bottleneck, a standard
3× 3 convolutional layer processes the compressed represen-
tation. The decoder mirrors the encoder but differs in a few
key aspects: it uses transposed convolutions for upsampling
instead of standard convolutions, and replaces Leaky-ReLU
with ReLU as the activation function. The final transposed
convolution restores the original spatial resolution and maps
the output to the target domain using a sigmoid activation.

The generator G is fed with an STFT magnitude signal of
size 1 × 256 × 256, (channels, frequency bins, time frames).
During inference, the magnitude STFT reconstructed by the
generator is combined with the original STFT phase spectro-
gram (predicted by the LP) to reconstruct the audio signal in
the time domain.

The GAN Discriminator is a typical classification network,
starting with an initial convolutional layer followed by a series
of CNN blocks. Each CNN block features a convolutional
layer with reflection padding, batch normalization, and a
LeakyReLU activation function. The network concludes with
a fully connected layer that outputs a scalar value, representing
the discriminator’s assessment of the input data.

In addition to improving the CNN performance, the LPC
was also improved to obtain a speedup. Specifically, numpy
optimized operators were introduced, redundant computations
were removed, in-place operations were employed and slicing
was made for efficient. All these changes contributed to a
50% reduction of the LPC computation time compared to the
implementation used in our submission to the 2024 challenge.

B. Loss criteria

The discriminator is trained using a least-square conditional
loss function to make the training more stable and alleviate
the vanishing gradient problem [6]. The objective functions
for the joint conditional and least squares GAN (referred to
as LSCGAN) are defined as follows:
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The generator model is trained by combining the GAN
objective with two conventional pixel-wise losses between the
generated source spectrogram reconstruction and the expected
target spectrogram. Based on our previous studies, we have
found it beneficial to use loss functions that relate to the
perceptual quality of the audio signal. These include the log-
STFT magnitude loss (Lmag) and spectral convergence loss
(Lsc), defined as follows:
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where |St,f | and |Ŝt,f | represent the STFT magnitude vector
of the target and the generated signal respectively, at time t,
while T and N denote the number of time and frequency bins.
The spectral loss is given a weight of 10, while the adversarial
is given a weight of 1.

C. DNN training protocol

The training procedure involves processing chunks of 4096
samples, which equate to approximately 93 ms at the sampling
rate of 44 100 Hz, and correspond to 8 quantized gaps. As
the first step, the audio context, randomly extracted from
the dataset, is corrupted by inserting zeros at the end for
a duration of 1024 samples, then a coarse reconstruction is
performed with the LP. The resulting audio segment is then
transformed into the time-frequency domain and fed into the
bin2bin-v2 generator network, which refines the reconstruction
acting as a conditional-GAN (cGAN) [7]. The reliable portion
of spectrogram, preceding the gap, serves as the conditioning
signal, along with the rough inpainted bins provided by the
LP.

We followed a common practice in training generative
networks, which consists in balancing the evolution of training
by iterating nG times the generator weights update, for every
one of D. We used the value nG = 10. The model was trained
for an arbitrary number of epochs. Due to the lack of an
objective metric that directly correlates with the quality of the



reconstruction, we opted to systematically evaluate the training
progress by listening to the generated audio samples. Based on
these evaluations, we determined our criteria for selecting the
best network checkpoint. Finally, we used the Adam optimizer
for both the generator and the discriminator, with a learning
rate of 0.0002, progressively decreased to half, with a cosine
profile, and a batch size of 16.

D. Datasets

To ensure robust network generalization during the training
phase, we used an ensemble of three music signals collections.
The first, as recommended by the challenge organizers, is
Medley Solos DB [8], comprising nearly 18 hours of solo
instrument recordings across a taxonomy of eight instruments:
clarinet, distorted electric guitar, female singer, flute, piano,
tenor saxophone, trumpet, and violin. Additionally, to enable
the network to learn an extended frequency range for each
musical instrument timbre, we included the GoodSounds col-
lection [9], which contains monophonic recordings of both
sustained notes and scales. Finally, we augmented the training
set by generating 45 additional hours of synthetic audio clips
from MIDI sequences. For this purpose, we selected nine
representative instruments from the categories of keyboards,
strings and woodwinds, using the GeneralUser GS soundfont.1.
The MIDI sequences were sourced from the MAESTRO
dataset [10] and synthesized using FluidSynth 2.

III. EXPERIMENTS

According to the challenge guidelines, the test set was
inpainted using the proposed technique. Processing times were
measured on an Intel i7-6850K (3.6 GHz) processor from 2016
which, in benchmarks, offers comparable performance to the
recommended hardware specified in the guidelines, namely, an
Intel i5-10400F or equivalent. The average processing time for
each frame is 8.9 ms, thereby enabling real-time processing
of standard audio frames with a duration of 11.6 ms. This
measurement was obtained using 4 CPU cores, as utilizing
all available cores would introduce parallelization overhead
that increases computation time.

The project code, along with minimal instructions for setting
up experiments and reproducing results, is available on our
GitHub repository3.

We assessed the reconstruction quality of the proposed
method through both subjective and objective evaluations.
Subjectively, random samples from the test set were selected
for informal listening tests, which confirmed a perceptual
improvement of bin2bin-v2 over the previous bin2bin model.
Afterwards, we employed an objective evaluation metric, the
PLCMOS [11], a reference-free quality estimator specifically
designed for packet loss concealment tasks, with scores rang-
ing from 1 (bad) to 5 (excellent). Our enhanced method
achieved an average PLCMOS of 2.594, corresponding to
a 9.68% relative increase compared to the score of 2.365

1https://schristiancollins.com/generaluser.php
2https://www.fluidsynth.org
3https://github.com/aircarlo/bin2bin LPC

obtained by our previous model. In contrast, the lossy (unre-
paired) input files scored significantly lower, with an average
PLCMOS of 2.008.

As expected, the model is less effective at restoring musical
excerpts characterized by percussive sounds, low harmonic
content and dominant low-frequency components, where the
spectrogram resolution is lower and convolutional layers strug-
gle in generating the appropriate structures.

IV. CONCLUSIONS

This technical report described an approach to PLC based
on a enhanced version of the previously proposed combination
of LPC and bin2bin GAN. By combining the robustness of
LPC with the generative capabilities of GANs, our proposed
method will hopefully increase the current benchmark for PLC
in NMP, to ensure higher quality, real-time audio transmission
despite network-induced packet loss.
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