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Abstract—This technical report addresses the issue of packet
loss concealment (PLC) in Networked Music Performance (NMP)
by proposing a novel method that leverages Linear Predictive
Coding (LPC) combined with a bin2bin Generative Adversarial
Network (GAN). Unlike existing methods such as PARCnet,
which estimate the LPC error using an ANN, our approach uses
the LPC-generated audio to condition a generative bin2bin GAN
model for spectrogram inpainting. Experimental results show that
the method significantly improves the corrupted audio quality
mitigating the negative impact of packet loss and providing a
robust solution for real-time audio transmission at a relatively
low computational cost.

Index Terms—Packet Loss Concealment, Generative Adversar-
ial Network, Linear Predictive Coding

I. INTRODUCTION

Networked Music Performance (NMP) relies on high-
quality audio transmission with minimal latency to provide
a seamless and immersive experience. However, the inherent
unpredictability of network conditions often leads to packet
loss, which can severely degrade audio quality and disrupt the
performance. Addressing Packet Loss Concealment (PLC) in
NMP is thus critical for maintaining the integrity and quality
of the transmitted audio.

Traditional PLC methods, such as interpolation and repeti-
tion of lost packets, are often insufficient for the high-quality
demands of NMP. More advanced techniques have been in-
vestigated since the 1990s [1], but they still face limitations
in maintaining audio fidelity and minimizing latency.

In this technical report, we propose a novel method for
the PLC challenge organized at the 5th IEEE International
Symposium on the Internet of Sounds. It combines Linear
Predictive Coding (LPC) with a bin2bin [2] Generative Ad-
versarial Network (GAN). The baseline method proposed by
the organizers is a slightly modified PARCnet [3], which is
also based on a linear predictor (LP) and an artificial neural
network (ANN). In PARCnet, the goal of the ANN is to
estimate the LPC error, in order to correct the residuals in
the time domain. In our approach, instead, a bin2bin GAN is
employed to generate audio conditioned by the initial guess
signal provided by the LP model. This method leverages the
predictive capabilities of LPC and the generative strength of
GANs to reconstruct lost packets with high fidelity.

II. METHOD

The goal of the challenge is to conceal one or more
lost audio packets of very short duration (512 samples at

44100 Hz sampling rate). We assume that the defect locations
are indicated by a binary mask, known a priori. The proposed
concealment algorithm is illustrated in Figure 1. As soon as a
loss occurs, the system must provide a plausible reconstruction
in a fully causal setting, without any lookahead. Assuming
that all previous packets are reliable (even if some were
reconstructed in previous steps), the system initially performs
an inpainting hypothesis using the LP, which is adapted to
infer p = 128 coefficients from a context of 7 previous
contiguous frames (3584 samples, i.e. 81.3 ms). The LP is
required to produce a segment twice the length of the gap,
i.e., 1024 samples. This strategy provides a prediction of
future samples, useful for the subsequent potential crossfade
step, and facilitates the bin2bin network operation by placing
the corrupted samples slightly further away from the context
boundary.
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Fig. 1. Illustration of the proposed inpainting method.

A. bin2bin Model

In the proposed bin2bin approach, the generator architecture
leverages the U-Net design, incorporating skip-connections
between homogeneous layers. The U-Net consists of a con-
volutional encoder that downsamples the input spectrogram
and a decoder that upsamples the latent representation using
2d transposed convolutions. Two models have been proposed
with different size, named full and lite for simplicity. The
latter is designed to run in real-time on a CPU, while the
former requires a GPU to offload the computational power.
The number of convolutional kernels increases in the encoder
section as the network deepens. Specifically, for each of the 7
convolutional blocks, the number of kernels is [64, 128, 256,
512, 512, 512, 512] in the full setting, while they were reduced



to [16, 32, 64, 128, 128, 128, 128] in the lite setting; all kernels
are sized 4× 4 bins. At the bottleneck, an additional conv2d
layer processes the signal. Following, the decoder section
has a mirrored structure, and employs the same number of
kernels for the 2d transposed convolution operations. The only
differences between the encoder and decoder are the activation
functions used (Leaky-ReLU in the encoder and ReLU in the
decoder) and the inclusion of two dropout layers in the inner
upsample blocks. The generator G accepts an STFT magnitude
signal of size 1× 256× 256, (channels, frequency bins, time
frames). During inference, the magnitude STFT reconstructed
by the generator is combined with the original STFT phase
spectrogram (predicted by the LP) to reconstruct the audio
signal in the time domain.

The GAN Discriminator is a typical classification network,
starting with an initial convolutional layer followed by a series
of CNN blocks. Each CNN block features a convolutional
layer with reflection padding, batch normalization, and a
LeakyReLU activation function. The network concludes with
a fully connected layer that outputs a scalar value, representing
the Discriminator’s assessment of the input data.

B. Loss criteria
The discriminator is trained using a least-square conditional

loss function to make the training more stable and alleviate
the vanishing gradient problem [4]. The objective functions
for the joint conditional and least squares GAN (referred to
as LSCGAN) are defined as follows:

min
D

LLSCGAN (D) =
1

2
Ex,c

[
(D (x|c)− 1)

2
]
+

+
1

2
Ez,c

[
(D(G(z)|c))2

] (1)

min
G

LLSCGAN (G) =
1

2
Ez,c

[
(D (G(z)|c)− 1)

2
]

(2)

The generator model is trained by combining the GAN
objective with two conventional pixel-wise losses between the
generated source spectrogram reconstruction and the expected
target spectrogram. Based on our previous studies, we have
found it beneficial to use loss functions that relate to the
perceptual quality of the audio signal. These include the log-
STFT magnitude loss (Lmag) and Spectral Convergence loss
(Lsc), defined as follows:
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where |St,f | and |Ŝt,f | represent the STFT magnitude vector
of the target and the generated signal respectively, at time t,
while T and N denote the number of time and frequency bins.
The spectral loss is given a weight of 10, while the adversarial
is given a weight of 1.

C. DNN training protocol

The training procedure involves processing chunks of 4096
samples, which equate to approximately 93 ms at the sampling
rate of 44100 Hz, and correspond to 8 quantized gaps. As
the first step, the audio context, randomly extracted from
the dataset, is corrupted by inserting zeros at the end for
a duration of 1024 samples, then a coarse reconstruction is
performed with the LP. The resulting audio segment is then
transformed into the time-frequency domain and fed into the
bin2bin generator network, which refines the reconstruction
acting as a conditional-GAN (cGAN) [5]. The reliable portion
of spectrogram, preceding the gap, serves as the conditioning
signal, along with the rough inpainted bins provided by the
LP.

We followed a common practice in training generative
networks, which consists in balancing the evolution of training
by iterating nG times the generator weights update, for every
one of D. We used the value nG = 10. The model was trained
for an arbitrary number of epochs. Due to the lack of an
objective metric that directly correlates with the quality of the
reconstruction, we opted to systematically evaluate the training
progress by listening to the generated audio samples. Based on
these evaluations, we determined our criteria for selecting the
best network checkpoint. Finally, we used the Adam optimizer
for both the generator and the discriminator, with a learning
rate of 0.0002, progressively decreased to half, with a cosine
profile, and a batch size of 16.

D. Datasets

To ensure robust network generalization during the training
phase, we used an ensemble of three music signals collections.
The first, as recommended by the challenge organizers, is
Medley Solos DB [6], comprising nearly 18 hours of solo
instrument recordings across a taxonomy of eight instruments:
clarinet, distorted electric guitar, female singer, flute, piano,
tenor saxophone, trumpet, and violin. Additionally, to enable
the network to learn an extended frequency range for each
musical instrument timbre, we included the GoodSounds col-
lection [7], which contains monophonic recordings of both
sustained notes and scales. Finally, we augmented the training
set by generating 45 additional hours of synthetic audio clips
from MIDI sequences. For this purpose, we selected nine
representative instruments from the categories of keyboards,
strings and woodwinds, using the GeneralUser GS soundfont.1.
The MIDI sequences were sourced from the MAESTRO
dataset [8] and synthesized using FluidSynth 2.

III. EXPERIMENTS

According to the challenge guidelines, the test set was
inpainted using the proposed technique. Processing times are
provided in Table I. These were measured on an Intel i7-
6850K (3.6 GHz) processor from 2016 which, in benchmarks,
has close performances to an Intel i5-10400F. We also show

1https://schristiancollins.com/generaluser.php
2https://www.fluidsynth.org



                                              

0        50       100      150      200     250 0        50       100      150      200     250 0        50       100      150      200     250 

250 

200 

150 

100 

50 

0 

250 

200 

150 

100 

50 

0 

250 

200 

150 

100 

50 

0 

Input                                         Target                             Inpainted 

Fig. 2. Magnitude spectrograms of an example reconstruction. Left: LPC inpainted spectrogram, fed into the bin2bin. White dotted line indicates gap
displacement. Center: target spectrogram. Right: bin2bin refined spectrogram. The axes of the plots indicate the frequency bin and the frame index.

GPU time when running on a Nvidia Titan X 12 GB. In the
CPU configuration, operations involving numpy arrays were
accelerated with numba compiler; this allowed us to achieve
realtime operation for the lite model, which can process a
single gap in less than the allowed stride time (i.e. 11.6 ms).

Finally, the learnable parameter count for the considered
architectures amounts to 54.4 million, for the full configuration
and 3.4 million for the lite configuration.

TABLE I
FORWARD PROCESS TIME REQUIRED FOR INPAINTING A 512-SAMPLE GAP,

EQUIVALENT TO 11.6 MS AT 44.1 KHZ SAMPLE RATE.

CPU runtime GPU runtime

Model lite full lite full

Bin2bin forward 8.1 ms 54.0 ms 1.8 ms 1.8 ms
LPC 0.75 ms 0.75 ms 0.75 ms 0.75 ms
cross-fade 1.0 ms 1.0 ms 1.0 ms 1.0 ms

Total 9.85 ms 55.75 ms 3.55 ms 3.55 ms

IV. CONCLUSIONS

This technical report described an approach to PLC based
on LPC and a bin2bin GAN. By combining the robustness of
LPC with the generative capabilities of GANs, our proposed
method will hopefully increase the current benchmark for PLC
in NMP, to ensure higher quality, real-time audio transmission
despite network-induced packet loss.
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